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1. Cantilever preparation for TEM analysis of the interface structure

Figure S1.1 Preparation of the AFM cantilever for TEM analysis. 
(a) Cantilever coated with e-beam sputtered platinum
(b) Excess material milled out using FIB
(c) Sample welded to manipulator and milled from cantilever
(d) Sample welded to TEM stub and milled free from manipulator
(e) Sample polished sequentially using FIB until c.a. 50 nm thick.   

  
Figure S1.2 FFT analysis of (a) Ti film and (b) Cr film. 

(a) (b)
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2. Theoretical consideration of beam vertical deflection under the action of surface shear stresses

Consider a rectangular beam of length  and width with a point load acting on the end and with a L 2b P
shear stress, , acting on the top surface and another, , acting on the lower surface, as shown in Fig. 1 2
S2.1: 

Figure S2.1 Schematic of a beam under the action of surface shear stresses

In this case the boundary conditions are:
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where and denote shear and normal stresses respectively and  and are the axial and vertical   u v
displacements.  is the force per unit width. To find the stresses within the beam and the resulting 'P
displacements, a representative Airy stress function is assumed to exist of the form:
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where denotes an unknown constant. From this the stresses can be directly found to be:c
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Employing the boundary conditions given in Eq. 1, the tractions on each surface can be found:
On :y b
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The equilibrium equation and resultant forces become:

 \* MERGEFORMAT (10)     
   

4 6 12 13 14

2 2 2 4 4
15 16 1

4 4 4

4 2 2 4

2
7 18

2 2 2 2
19 20 2

2

2

2

1 2

8 24 24 72 24 ...

24 24 24 24 ..2 .

24 24 24 2 2 6

12

04

6

x
c c x c y c xy c

c y c y x c y y x c y

c c x c x y c

x y y

x x

x

y

x y

    
  

  
    

   

   







  



 \* MERGEFORMAT (11)3
8 19(0, ) 4 8 0

b

x x
b

F y dy c b c b


   

 \* MERGEFORMAT (12)3
1 11(0, ) 2 2 '

b

y xy
b

F y dy c b c b P


    

Equating coefficients and solving Eqs. 3-12 to find the unknown constants gives the Airy stress function 
as:
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The stress state in the beam can therefore be shown to be:
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The resultant strain field becomes:
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where E is the Young’s modulus, and G is the shear modulus.

Integrating Eqs. 17 and 18 gives:
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Substituting Eqs. 26 and 27 into eq. 21 and 20 respectively gives:
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Putting these expressions back into Eq. 22 gives: 
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Therefore the complete description of the displacements within a stressed beam with a point load is:
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Or in terms of the second moment of area, defined as: 
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where  and is in Newtons. 'P P w

When 1 2 0 :  
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This is the result given by the analysis of the unstressed beam. As it is only the vertical deflection that is 
of concern here, it is interesting to consider a few special cases. For instance the shape of the beam due 
to surface stresses when there is no external load is given by Eq. 41:
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Assuming the beam is thin so that the deflection is that of the centre of the beam, i.e. when the 0,y 
deflection is given as:
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Eq. 42 was fitted to the measured interferometric data in order to ascertain the stress on the top surface. 
 was assumed to be 0 as there was no metal deposition on the underside of the beam. 2
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3. Calculated surface shear stresses due to beam metallisation

Cantilever
Beam 

length, L
(µm)

Beam 
width, w 

(μm)

Beam 
resonant 

frequency, ν
(kHz)

Beam 
thickness, 

2b
(µm)

Thickness of 
deposited 

metal film, tf

(nm)

Initial oxide 
thickness, 

tox

(nm)

Initial spring 
constant, k

(N/m)

Upper 
surface 
shear 

stress, τ1

(kPa)

Ti 01 90 35 200.8 1.24 4.5 3.7 3.48 -12.3
Ti 02 110 35 124.7 1.15 4.5 3.7 1.52 -10.1
Ti 03 130 35 87.6 1.13 4.5 3.7 0.87 -8.5
Ti 04 90 35 213.3 1.32 4.5 3.5 4.17 -12.3
Ti 05 110 35 135.2 1.25 4.5 3.5 1.94 -10.1
Ti 06 130 35 92.7 1.20 4.5 3.5 1.05 -8.5
Ti 07 90 35 201.7 1.25 12.0 3.9 3.56 -74.7
Ti 08 110 35 133.9 1.24 12.0 3.9 1.89 -61.1
Ti 09 130 35 91.6 1.19 12.0 3.9 1.02 -51.7
Ti 10 90 35 196.7 1.22 12.0 3.1 3.31 -74.7
Ti 11 110 35 132.4 1.23 12.0 3.1 1.83 -61.1
Ti 12 130 35 91.2 1.18 12.0 3.1 0.99 -51.7

Cr 01 90 35 205.6 1.27 6.0 3.9 3.74 20.0
Cr 02 110 35 136.3 1.26 6.0 3.9 1.94 16.4
Cr 03 130 35 93.9 1.21 6.0 3.9 1.07 13.4
Cr 04 90 35 207.9 1.29 6.0 3.3 3.92 20.0
Cr 05 110 35 150.7 1.39 6.0 3.3 2.68 16.4
Cr 06 130 35 94.4 1.22 6.0 3.3 1.10 13.4
Cr 07 90 35 187.4 1.16 12.0 3.5 2.85 143.3
Cr 08 110 35 129.2 1.20 12.0 3.5 1.70 117.3
Cr 09 130 35 88.2 1.14 12.0 3.5 0.90 99.2
Cr 10 90 35 201.6 1.25 12.0 5.1 3.56 143.3
Cr 11 110 35 130.5 1.21 12.0 5.1 1.75 117.3
Cr 12 130 35 93.8 1.21 12.0 5.1 1.07 99.2

Table 1. Shear stress applied to the upper surface of beams metallised with Ti and Cr, calculated by fitting 
Eq. 1 to vertical curvature measured using interferometry. Beam thickness and initial spring constant 
calculated according to the method described Bowen et al. [30]
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4. Calculated beam deflections due to uniformly distributed loads

The maximum deflection, , of a static, nominally horizontal, rectangular cantilever beam under its 𝛿𝑚𝑎𝑥

own weight is given by:

(43)
𝛿𝑚𝑎𝑥 =

𝑚𝑔𝐿3

8𝐸𝐼

where,  beam mass and is given by Eq. 44,  acceleration due to gravity,  beam length,  𝑚 = 𝑔 = 𝐿 = 𝐸 =

Young's modulus, and the second area moment of inertia, , is given by Eq. 45.𝐼

(44)𝑚 = 𝐿𝑤𝑡𝑏𝜌𝑏 + 𝐿𝑤𝑡𝑓𝜌𝑓

(45)
𝐼 =

𝑤𝑡3

12

Note that  beam width,  beam thickness,  film thickness,  beam density,  film density. 𝑤 =  𝑡𝑏 = 𝑡𝑓 =   𝜌𝑏 =  𝜌𝑓 =

It is assumed that the film covers the full length and width of the beam upper surface, and that the 
Young's modulus of the beam is not significantly modified by the presence of the metal film.

Table 2 lists the calculated deflection of the longest cantilevers under consideration in this work, where 
 110 μm,  35 μm,  9.81 m/s2,  152 GPa,  1 μm,  2,130 kg/m3.𝐿 = 𝑤 = 𝑔 = 𝐸 = 𝑡𝑏 =  𝜌𝑏 =

Beam Metal film thickness
(nm)

Metal density
(kg/m3)

Beam mass
(ng)

Film mass
(ng)

Film mass/Beam mass
(%)

Maximum beam deflection
(pm)

No film 0 - 8.201 - 0 94.9
Cr 6 nm 6 7,190 8.201 0.166 2.03 95.8

Cr 12 nm 12 7,190 8.201 0.332 4.05 97.3
Ti 4.5 nm 4.5 4,506 8.201 0.078 0.95 96.8
Ti 12 nm 12 4,506 8.201 0.208 2.54 98.7

Table 2. Calculated metal film masses and cantilever beam deflections under uniformly distributed load
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5. Strain due to heteroepitaxial film growth

If the Ti or Cr atoms were sufficiently ordered upon deposition on to the SiO2 surface, the film growth 
could be described by a heteroepitaxial model. In such a scenario, the strain could arise from two main 
sources:
(i) the difference in the lattice parameter between the metal layer and the substrate, and 
(ii) the difference in the thermal expansion coefficients. 

As the film was deposited on an unheated substrate, it is likely that thermal expansion effects can be 
ignored. The possibility exists therefore that lattice parameter mismatch could be significant. If the lattice 
parameter difference is accommodated by the elastic deformation of the metal layer, the elastic strain in 
the metal layer is given by Eq. 46 [32]:

(46)
𝜀 ≈

𝑎𝑚 ‒ 𝑎𝑠

𝑎𝑠

where  and  are the unstrained lattice parameters of the metal layer and substrate respectively. 𝑎𝑚 𝑎𝑠

It should be noted that for , the strain in the metal film is compressive and hence  is positive. 𝑎𝑚 > 𝑎𝑠 𝜀

Similarly, when , the strain in the metal film is tensile and  is negative. 𝑎𝑚 < 𝑎𝑠 𝜀

Eq. 46 assumes that only the metal layer is elastically deformed and that there is no strain gradient across 
the film thickness. In reality, any strain induced in the film will also induce a strain in the substrate, albeit 
much smaller. These effects are strongly dependent on the thickness of the film. 

For the systems investigated in this work, the film thickness is sufficiently small as to make Eq. 46 a 
reasonable approximation. As the metal film is always in contact with the native SiO2 layer atop the Si 
cantilever, the lattice parameter of the substrate is taken to be that of SiO2.

Material Crystal type Unit cell axis a
(Å)

Unit cell axis b
(Å)

Unit cell axis c 
(Å)

Unit cell volume
(Å3)

Mean lattice parameter
(Å)

SiO2 Hexagonal 4.914 - 5.405 113.03 4.84
Ti Hexagonal 2.95 - 4.69 35.32 3.28
Cr Isometric 2.8839 - - 23.99 2.88

TiO2 Orthorhombic 9.1742 5.4492 5.1382 256.87 6.36
Cr2O3 Hexagonal 4.9607 - 13.599 289.82 6.62

Note: The lattice parameter is an average value found by taking the cube root of the cell volume.

Table 3. Unstrained crystal properties of the various materials found deposited onto the cantilevers. 

It can be seen from Eq. 46 and Table 3 that the stress in the metal layer would be  -0.32 for Ti and 𝜀 =

-0.40 for Cr. This suggests that both Ti and Cr films should both be in tension. However, comparing 𝜀 =  

Figs. 3 and 5, it can be seen that the Cr film has developed a significant Cr2O3 layer, whereas the Ti film 
did not develop an oxide layer. Cr2O3 has an average lattice parameter larger than both Cr and SiO2. Hence 
it is possible that the Cr2O3 layer could induce a compressive strain, via lattice parameter mismatch. 
Unfortunately, Eq. 46 does not describe systems with multiple layers of different materials. 
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While this analysis is standard for analysing epitaxial films, it predicts much larger strains, and therefore 
stresses, than actually measured. This provides evidence that the films are not deposited epitaxially and 
that there is likely a significant distribution in the structure and associated local lattice parameters within 
the metallic film. There is evidence of some long range order and crystallisation in the films, but this 
seems to be of a granular nature, making a more in-depth analysis of the effects of crystalline orientation 
akin to that given in [33] inappropriate.      


