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1. Cantilever preparation for TEM analysis of the interface structure

Figure S1.1 Preparation of the AFM cantilever for TEM analysis.

(a) Cantilever coated with e-beam sputtered platinum

(b) Excess material milled out using FIB

(c) Sample welded to manipulator and milled from cantilever

(d) Sample welded to TEM stub and milled free from manipulator
(e) Sample polished sequentially using FIB until c.a. 50 nm thick.

Figure S1.2 FFT analysis of (a) Ti film and (b) Cr film.



2. Theoretical consideration of beam vertical deflection under the action of surface shear stresses

Consider a rectangular beam of length L and width 2b with a point load P acting on the end and with a
shear stress, 7,, acting on the top surface and another, 7,, acting on the lower surface, as shown in Fig.

S2.1:
N

]
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Figure $2.1 Schematic of a beam under the action of surface shear stresses

In this case the boundary conditions are:
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where 7and o denote shear and normal stresses respectively and u and vare the axial and vertical
displacements. P' is the force per unit width. To find the stresses within the beam and the resulting
displacements, a representative Airy stress function is assumed to exist of the form:
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where ¢ denotes an unknown constant. From this the stresses can be directly found to be:
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Employing the boundary conditions given in Eq. 1, the tractions on each surface can be found:
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The equilibrium equation and resultant forces become:
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Equating coefficients and solving Egs. 3-12 to find the unknown constants gives the Airy stress function
as:

_3P'xy N P'xy’ L0 +

= T @

e —y2)+T24—_bT1xy2 \* MERGEFORMAT (13)



The stress state in the beam can therefore be shown to be:
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The resultant strain field becomes:
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where E is the Young’s modulus, and G is the shear modulus.
Integrating Eqs. 17 and 18 gives:
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Substituting these expressions into Eq. 19 gives:
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Rearranging and integrating Eqns. 23 and 24 in turn gives:
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Substituting Eqgs. 26 and 27 into eq. 21 and 20 respectively gives:
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The boundary condition du/dy(L,0) =0 leads to:
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Putting these expressions back into Eq. 22 gives:
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Therefore the complete description of the displacements within a stressed beam with a point load is:
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Or in terms of the second moment of area, defined as:
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where wdenotes the width of the beam:
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This is the result given by the analysis of the unstressed beam. As it is only the vertical deflection that is
of concern here, it is interesting to consider a few special cases. For instance the shape of the beam due
to surface stresses when there is no external load is given by Eq. 41:
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Assuming the beam is thin so that the deflection is that of the centre of the beam, i.e. when y=0,the
deflection is given as:
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Eqg. 42 was fitted to the measured interferometric data in order to ascertain the stress on the top surface.

7, was assumed to be 0 as there was no metal deposition on the underside of the beam.



3. Calculated surface shear stresses due to beam metallisation

Beam Beam Thickness of Initial oxide . . Upper
Beam Beam . . . Initial spring surface
Cantilever length, L width, w resonant BT deposilted gl I constant, k shear
(um) (um) frequency, v 2b metal film, t; tox (N/m) B
(kHz) (um) (nm) (nm) (kPa)
TiOol 90 35 200.8 1.24 4.5 3.7 3.48 -12.3
Ti 02 110 35 124.7 1.15 4.5 3.7 1.52 -10.1
Ti 03 130 35 87.6 1.13 4.5 3.7 0.87 -8.5
Ti 04 90 35 213.3 1.32 4.5 3.5 4.17 -12.3
Ti 05 110 35 135.2 1.25 4.5 3.5 1.94 -10.1
Ti 06 130 35 92.7 1.20 4.5 3.5 1.05 -8.5
Ti 07 90 35 201.7 1.25 12.0 3.9 3.56 -74.7
Ti 08 110 35 133.9 1.24 12.0 3.9 1.89 -61.1
Ti 09 130 35 91.6 1.19 12.0 3.9 1.02 -51.7
Ti 10 90 35 196.7 1.22 12.0 3.1 3.31 -74.7
Till 110 35 132.4 1.23 12.0 3.1 1.83 -61.1
Ti 12 130 35 91.2 1.18 12.0 3.1 0.99 -51.7
Cr01 90 35 205.6 1.27 6.0 3.9 3.74 20.0
Cr 02 110 35 136.3 1.26 6.0 3.9 1.94 16.4
Cr03 130 35 93.9 1.21 6.0 3.9 1.07 13.4
Cr 04 90 35 207.9 1.29 6.0 3.3 3.92 20.0
Cr 05 110 35 150.7 1.39 6.0 3.3 2.68 16.4
Cr 06 130 35 94.4 1.22 6.0 3.3 1.10 13.4
Cr 07 90 35 187.4 1.16 12.0 3.5 2.85 143.3
Cr 08 110 35 129.2 1.20 12.0 3.5 1.70 117.3
Cr 09 130 35 88.2 1.14 12.0 3.5 0.90 99.2
Cr 10 90 35 201.6 1.25 12.0 5.1 3.56 143.3
Crl1l 110 35 130.5 1.21 12.0 5.1 1.75 117.3
Cr12 130 35 93.8 1.21 12.0 5.1 1.07 99.2

Table 1. Shear stress applied to the upper surface of beams metallised with Ti and Cr, calculated by fitting
Eq. 1 to vertical curvature measured using interferometry. Beam thickness and initial spring constant
calculated according to the method described Bowen et al. [30]



4. Calculated beam deflections due to uniformly distributed loads

)

The maximum deflection, “max, of a static, nominally horizontal, rectangular cantilever beam under its

own weight is given by:
_ mgL3

where, M= beam mass and is given by Eq. 44, 9 = acceleration due to gravity, L = beam length, E=
Young's modulus, and the second area moment of inertia, /, is given by Eq. 45.

m=Lwtyp, + Lwtep, (44)
wt®
12 (45)

Note that W = beam width, 6= beam thickness, {f = film thickness, P> = beam density, °f = film density.
It is assumed that the film covers the full length and width of the beam upper surface, and that the
Young's modulus of the beam is not significantly modified by the presence of the metal film.

Table 2 lists the calculated deflection of the longest cantilevers under consideration in this work, where
L= 110 pm,w= 35pum, 9= 9.81 m/s?, E= 152 GPa, ®»= 1 pm, P»= 2,130 kg/m3.

Beam Metal film thickness | Metal density Beam mass Film mass | Film mass/Beam mass | Maximum beam deflection
(nm) (kg/m3) (ng) (ng) (%) (pm)
No film 0 - 8.201 - 0 94.9
Cr6nm 6 7,190 8.201 0.166 2.03 95.8
Cr12 nm 12 7,190 8.201 0.332 4.05 97.3
Ti4.5nm 4.5 4,506 8.201 0.078 0.95 96.8
Til2 nm 12 4,506 8.201 0.208 2.54 98.7

Table 2. Calculated metal film masses and cantilever beam deflections under uniformly distributed load



5. Strain due to heteroepitaxial film growth

If the Ti or Cr atoms were sufficiently ordered upon deposition on to the SiO, surface, the film growth
could be described by a heteroepitaxial model. In such a scenario, the strain could arise from two main
sources:

(i) the difference in the lattice parameter between the metal layer and the substrate, and

(i) the difference in the thermal expansion coefficients.

As the film was deposited on an unheated substrate, it is likely that thermal expansion effects can be
ignored. The possibility exists therefore that lattice parameter mismatch could be significant. If the lattice
parameter difference is accommodated by the elastic deformation of the metal layer, the elastic strain in
the metal layer is given by Eq. 46 [32]:

A~ Ag
ex

s (46)
where %m and % are the unstrained lattice parameters of the metal layer and substrate respectively.

It should be noted that for %m = %s, the strain in the metal film is compressive and hence ¢ is positive.

Similarly, when %m <@

s, the strain in the metal film is tensile and € is negative.

Eqg. 46 assumes that only the metal layer is elastically deformed and that there is no strain gradient across
the film thickness. In reality, any strain induced in the film will also induce a strain in the substrate, albeit
much smaller. These effects are strongly dependent on the thickness of the film.

For the systems investigated in this work, the film thickness is sufficiently small as to make Eq. 46 a
reasonable approximation. As the metal film is always in contact with the native SiO, layer atop the Si
cantilever, the lattice parameter of the substrate is taken to be that of SiO,.

Material Crystal type Unit cell axis a Unit cell axis b Unit cell axis c Unit cell volume Mean lattice parameter
(A) (A) (A) (A3) (A)
Sio, Hexagonal 4.914 - 5.405 113.03 4.84
Ti Hexagonal 2.95 - 4.69 35.32 3.28
Cr Isometric 2.8839 - - 23.99 2.88
TiO, Orthorhombic 9.1742 5.4492 5.1382 256.87 6.36
Cr,03 Hexagonal 4.9607 - 13.599 289.82 6.62

Note: The lattice parameter is an average value found by taking the cube root of the cell volume.

Table 3. Unstrained crystal properties of the various materials found deposited onto the cantilevers.

It can be seen from Eq. 46 and Table 3 that the stress in the metal layer would be €= -0.32 for Ti and
€= -0.40 for Cr. This suggests that both Ti and Cr films should both be in tension. However, comparing
Figs. 3 and 5, it can be seen that the Cr film has developed a significant Cr,03 layer, whereas the Ti film
did not develop an oxide layer. Cr,05 has an average lattice parameter larger than both Cr and SiO,. Hence
it is possible that the Cr,03 layer could induce a compressive strain, via lattice parameter mismatch.
Unfortunately, Eq. 46 does not describe systems with multiple layers of different materials.
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While this analysis is standard for analysing epitaxial films, it predicts much larger strains, and therefore
stresses, than actually measured. This provides evidence that the films are not deposited epitaxially and
that there is likely a significant distribution in the structure and associated local lattice parameters within
the metallic film. There is evidence of some long range order and crystallisation in the films, but this
seems to be of a granular nature, making a more in-depth analysis of the effects of crystalline orientation
akin to that given in [33] inappropriate.
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