Supplementary Information

Phase-driven Magneto-electrical Characteristics of Single-layer MoS₂

Chao-Yao Yang¹, Kuan-Chang Chiu⁵, Shu-Jui Chang⁶, Xin-Quan Zhang⁵, Jaw-Yeu Liang⁶, Chi-Sheng Chung⁳, Hui Pan⁵, Yuan-Chieh Tseng*⁶, and Yi-Hsien Lee⁵

¹Materials Science & Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan.
⁵Materials Science & Engineering, National Tsing Hua University, Hsin-chu, Taiwan.
⁶Institute of Applied Physics and Materials Engineering, University of Macau, Macau.

*E-mail: yctseng21@mail.nctu.edu.tw

Fig. S1: The CVD-prepared MoS₂ isolated domains were transferred to fresh SiO₂/Si substrates for device fabrications. Au electrode patterns as source and drain were prepared by E-beam lithography technique followed by E-gun evaporation deposition. The pattern layout is illustrated in this figure. The SiO₂/Si substrates were employed as dielectrics and back gate respectively for controlling the carrier concentration of MoS₂ channel. The transport properties were investigated with Keithley 4200 semiconductor characterization system. The same FET devices were examined before and after gas treatments for comparison.
Fig. S2: The electrical characteristics (I_d-V_g) measured at $V_d=1$ V, for (a) pristine, (b) O$_2$-treated, and (c) Ar-treated MoS$_2$ FET. All of the device conditions show an n-type behavior. The corresponding I_{on}/I_{off} ratio and mobility (μ) of respective device condition are numerically demonstrated inside the figures.