Supporting Information for

Three-dimensional WS₂ Nanosheet Networks for H₂O₂ Produced for Cell Signaling

Jing Tang, Yingzhou Quan, Yueyu Zhang, Min Jiang, Abdullah M. Al-Enizi, Biao Kong, Tiance An, Wenshuo Wang, Limin Xia, Xingao Gong and Gengfeng Zheng

Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China

Key Laboratory of Computational Physical Sciences, Ministry of Education, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China

Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China

Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China

* Correspondence to: gfzheng@fudan.edu.cn (G.Z.)

† J.T., Y.Q. and Y.Z. contributed equally to this work.
Supporting Figures

Fig. S1. Cyclic voltammograms of (a) carbon fiber, (b) WS$_2$/carbon fiber in PBS, (c) carbon fiber, and (d) WS$_2$/carbon fiber in PBS with and without 0.1 mM H$_2$O$_2$ in the N$_2$ saturated 0.1 M PBS at a scan rate of 50 mV s$^{-1}$.
Fig. S2. ROS selectivity obtained at −0.25 V versus Ag/AgCl toward the addition of H$_2$O$_2$, O$_2$•$^-$ and ClO$^-$.

Fig. S3. Amperometric responses obtained at the WS$_2$/carbon fiber electrodes located near in living RAW 264.7 macrophage cells at applied potentials of −0.25 V versus Ag/AgCl in 0.1 M PBS (pH 7.4) with the addition of 0.3 µM fMLP and 60 U mL$^{-1}$ (final concentration) of catalase.
Table S1. Comparison of the electrochemical detection limits of different H$_2$O$_2$ sensors.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Detection limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D WS$_2$</td>
<td>2 nM</td>
<td>Our work</td>
</tr>
<tr>
<td>Pt${48}$Pd${52}$-Fe$_3$O$_4$ on carbon</td>
<td>0.005 μM</td>
<td>Ref. S1</td>
</tr>
<tr>
<td>HRP-Au-chitosan-clay</td>
<td>9 μM</td>
<td>Ref. S2</td>
</tr>
<tr>
<td>Pt-MnO-graphene</td>
<td>0.05 μM</td>
<td>Ref. S3</td>
</tr>
<tr>
<td>AuCu nanowires</td>
<td>0.002 μM</td>
<td>Ref. S4</td>
</tr>
<tr>
<td>Au/MnO NPs</td>
<td>0.008 μM</td>
<td>Ref. S5</td>
</tr>
<tr>
<td>MoS$_2$ Nanoparticles</td>
<td>0.0025 μM</td>
<td>Ref. S6</td>
</tr>
<tr>
<td>Hydrogel-Stabilized Enzyme</td>
<td>50 nM</td>
<td>Ref. S7</td>
</tr>
<tr>
<td>Au-TiO$_2$</td>
<td>2 nM</td>
<td>Ref. S8</td>
</tr>
<tr>
<td>PCL-2 and IETDC probes</td>
<td>0.037 μM</td>
<td>Ref. S9</td>
</tr>
<tr>
<td>CdS–Carbon Nanotube Nanocomposite</td>
<td>0.08 μM</td>
<td>Ref. S10</td>
</tr>
</tbody>
</table>

References

