A Dehydrogenative Cross-Coupling Reaction Between Aromatic Aldehydes or Ketones with Dialkyl H-Phosphonates for Formyl or Acylphenylphosphonates

Xing-Fen Huang,a Qing-Lai Wu,a Jian-Shi Heb and Zhi-Zhen Huanga, c, *

a Department of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, P. R. China
b Jiangsu Coben Pharmaceutical Co., Ltd.
c State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
E-mail: huangzhizhen@zju.edu.cn

Supporting Information

Contents

1. General Information...S2
2. Optimizations of the Reaction Conditions...S2
3. 31P NMR, 1H NMR, 13C NMR, HR-MS and HMBC Spectra of Representative Products..S3
1. General Information:

All aldehydes were distilled or purified via flash chromatography prior to use. Unless otherwise indicated, other reagents were purchased from commercial distributors and used without further purification. ^{13}P NMR, ^{1}H NMR and ^{13}C NMR were recorded at 162 MHz, 400 MHz and 100 MHz respectively, using tetramethylsilane as an internal standard. Mass spectra were obtained on an HRMS-EI instrument. Flash column chromatography was performed over silica gel 200-300 mesh.

2. Optimization of the Reaction Conditions

Table S1. Screening of reaction conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>[M] (mol%)</th>
<th>[O] (equiv)</th>
<th>[S] (mL)</th>
<th>Yield (%)$^{[b]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu(OTf)$_2$(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN(3)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Cu(OAc)$_2$(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN(3)</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)$_2$(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN(3)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN(3)</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN(3)</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN:H$_2$O(1.5:1.5)</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>Acetone:H$_2$O(1.5:1.5)</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>DCM:H$_2$O(1.5:1.5)</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>THF:H$_2$O(1.5:1.5)</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN:H$_2$O(0.5:0.5)</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN:H$_2$O(3:3)</td>
<td>63</td>
</tr>
<tr>
<td>13</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>Ag$_2$O(10)</td>
<td>K$_2$S$_2$O$_8$(1)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>58</td>
</tr>
<tr>
<td>15</td>
<td>Ag$_2$O(10)</td>
<td>DCP(1)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Ag$_2$O(10)</td>
<td>NMO(2)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Ag$_2$O(10)</td>
<td>TBHP(2)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Ag$_2$O(10)</td>
<td>Na$_2$S$_2$O$_8$(3)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>65</td>
</tr>
<tr>
<td>19</td>
<td>Ag$_2$O(5)</td>
<td>K$_2$S$_2$O$_8$(2)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>Ag$_2$O(20)</td>
<td>K$_2$S$_2$O$_8$(2)</td>
<td>CH$_3$CN:H$_2$O(2.5:2.5)</td>
<td>63</td>
</tr>
</tbody>
</table>

[a] Conditions: 1a 0.5mmol, 2a 1mmol, 100°C, 1.5h; [b] Isolated yields.
3. 31P NMR, 1H NMR, 13C NMR, and HR-MS Spectra of Products

31P NMR Spectrum of diethyl formylphenylphosphonate 3aa
1H NMR Spectrum of diethyl 4-formylphenylphosphonate 3aa
13C NMR Spectrum of diethyl 4-formylphenylphosphonate 3aa
Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
45 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1
hxn-13 401 (2.474)
TOP MS El+

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.0710</td>
<td>242.0708</td>
<td>0.2</td>
<td>0.8</td>
<td>5.0</td>
<td>5546943.0</td>
<td>C11 H15 O4 P</td>
</tr>
</tbody>
</table>
13P NMR Spectrum of dimethyl formylphenylphosphonate 3ab
1H NMR Spectrum of dimethyl 4-formylphenylphosphonate 3ab
13C NMR Spectrum of dimethyl 4-formylphenylphosphonate 3ab
Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
40 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1
hxf-14 403 (2.482)
TOF MS El+

Minimum: 1.0 10.0 50.0
Maximum: -1.5

Mass Calc. Mass mDa PPM DBE i-FIT Formula
214.0394 214.0395 -0.1 -0.5 5.0 5546929.0 C9 H11 O4 P
13P NMR Spectrum of diethyl formyl-3-methoxyphenylphosphonate 3da
1H NMR Spectrum of diethyl 4-formyl-3-methoxyphenylphosphonate 3da
13C NMR Spectrum of diethyl 4-formyl-3-methoxyphenylphosphonate 3da
HR-MS Spectrum of diethyl 4-formyl-3-methoxyphenylphosphonate 3da

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
50 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1
hxl-17 570 (3.094)
TOF MS El+

Minimum: 1.0 10.0 50.0
Maximum: -1.5

Mass Calc. Mass mDa PPM DBE i-FIT Formula
272.0816 272.0814 0.2 0.7 5.0 5545824.5 C12 H17 O5 P
\(^{13}\text{P NMR Spectrum of diethyl formyl-2-methoxyphenylphosphonate 3ea}\)
1H NMR Spectrum of diethyl 4-formyl-2-methoxyphenylphosphonate 3ea
13C NMR Spectrum of diethyl 4-formyl-2-methoxyphenylphosphonate 3ea
Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
50 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1
hnl-16.570 (3.094)
TOF MS El+

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>272.0815</td>
<td>272.0814</td>
<td>0.1</td>
<td>0.4</td>
<td>5.0</td>
<td>5546443.0</td>
<td>C12 H17 O5 P</td>
</tr>
</tbody>
</table>
13P NMR Spectrum of diethyl 3-fluoro-4-formylphenylphosphonate 3fa
1H NMR Spectrum of diethyl 3-fluoro-4-formylphenylphosphonate 3fa
13C NMR Spectrum of diethyl 3-fluoro-4-formylphenylphosphonate 3fa
HR-MS Spectrum of diethyl 3-fluoro-4-formylphenylphosphonate 3fA

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
43 formula(s) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1 F: 1-1

hxf-19 379 (2.394)
TOF MS EI+ 1.78e+003

Minimum:
Maximum:
<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>260.0610</td>
<td>260.0614</td>
<td>-0.4</td>
<td>-1.5</td>
<td>5.0</td>
<td>5546874.5 C11 H14 O4 P F</td>
<td></td>
</tr>
</tbody>
</table>
13P NMR Spectrum of diethyl 2-fluoroformylphenylphosphonate 3ga
1H NMR Spectrum of (diethyl 2-fluoro-4-formylphenylphosphonate 3ga
13C NMR Spectrum of diethyl 2-fluoro-4-formylphenylphosphonate 3ga
HR-MS Spectrum of diethyl 2-fluoro-4-formylphenylphosphonate 3ga

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
43 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 F: 1-1 P: 0-1

260.0608 260.0614 -0.6 -2.3 5.0 5546105.0 C11 H14 O4 F P
13P NMR Spectrum of diethyl acetylphenylphosphonate 3ja
1H NMR Spectrum of diethyl 4-acetylphenylphosphonate 3ja
13C NMR Spectrum of diethyl 4-acetylphenylphosphonate 3ja
HR-MS Spectrum of diethyl 4-acetylphenylphosphonate 3j

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
47 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1
hxl-1 535 (2.666)
TOP MS El+

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>256.0864</td>
<td>256.0864</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>5546544.5</td>
<td>C12 H17 O4 P</td>
</tr>
</tbody>
</table>
13P NMR Spectrum of dimethyl acetylphenylphosphonate 3jb
1H NMR Spectrum of dimethyl 4-acetylphenylphosphonate \textbf{3jb}
13C NMR Spectrum of dimethyl 4-acetylphenylphosphonate $3jb$
HR-MS Spectrum of dimethyl 4-acetylphenylphosphonate 3jb

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
43 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1
m/z 11 495 (2.819)

TOF MS El+

Minimum: 1.0 10.0 -1.5
Maximum: 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.0549</td>
<td>228.0551</td>
<td>-0.2</td>
<td>-0.9</td>
<td>5.0</td>
<td>5546653.5</td>
<td>C10 H13 O4 P</td>
</tr>
</tbody>
</table>
13P NMR Spectrum of diisopropyl acetylphenylphosphonate 3jc
1H NMR Spectrum of diisopropyl 4-acetylphenylphosphonate 3je
13C NMR Spectrum of diisopropyl 4-acetylphenylphosphonate 3je
S38 HR-MS Spectrum of diisopropyl 4-acetylphenylphosphonate

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
52 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1
hxf-12 502 (2.845)
TOF MS EI+

Minimum:
Mass Calc. Mass mDa PPM DBE i-FIT Formula
284.1173 284.1177 -0.4 -1.4 5.0 5548386.0 C14 H21 O4 P
31P NMR Spectrum of diethyl acetyl-2-methylphenylphosphonate 3ka
^{1}H NMR Spectrum of diethyl 4-acetyl-2-methylphenylphosphonate 3ka
13C NMR Spectrum of diethyl 4-acetyl-2-methylphenylphosphonate 3ka
HR-MS Spectrum of diethyl 4-acetyl-2-methylphenylphosphonate 3ka
13P NMR Spectrum of diethyl acetyl-3-fluorophenylphosphonate 3ma
1H NMR Spectrum of diethyl 4-acetyl-3-fluorophenylphosphonate \textbf{3ma}
13C NMR Spectrum of diethyl 4-acetyl-3-fluorophenylphosphonate 3ma
HR-MS Spectrum of diethyl 4-acetyl-3-fluorophenylphosphonate 3ma

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
47 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1 F: 1-1

hxf-5 602 (3.212)
TOF MS El+

Minimum: 10.00
Maximum: 100.00

<table>
<thead>
<tr>
<th>Mass</th>
<th>RA</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>274.0771</td>
<td>100.00</td>
<td>274.0770</td>
<td>0.1</td>
<td>0.4</td>
<td>5.0</td>
<td>5546302.5</td>
<td>C12 H16 O4 P F</td>
</tr>
</tbody>
</table>
13P NMR Spectrum of diethyl acetyl-2-fluorophenylphosphonate 3na
1H NMR Spectrum of diethyl 4-acetyl-2-fluorophenylphosphonate 3na
13C NMR Spectrum of diethyl 4-acetyl-2-fluorophenylphosphonate 3na
HR-MS Spectrum of diethyl 4-acetyl-2-fluorophenylphosphonate 3na

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
47 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 F: 1-1 P: 0-1
m/z 600 (3.204)
TOF MS El+

Minimum: 1.0 10.0 50.0
Maximum: -1.5

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>274.0769</td>
<td>274.0770</td>
<td>-0.1</td>
<td>-0.4</td>
<td>5.0</td>
<td>5546502.5</td>
<td>C12 H16 O4 F P</td>
</tr>
</tbody>
</table>
13P NMR Spectrum of diethyl acetyl-3-chlorophenylphosphonate 30a
1H NMR Spectrum of diethyl 4-acetyl-3-chlorophenylphosphonate 30a
13C NMR Spectrum of diethyl 4-acetyl-3-chlorophenylphosphonate 30a
HR-MS Spectrum of diethyl 4-acetyl-3-chlorophenylphosphonate 30a
HMBC Spectrum of diethyl 4-acetyl-3-chlorophenylphosphonate 3oa
13P NMR Spectrum of diethyl 4-acetyl-2-chlorophenylphosphonate $3pa$
1H NMR Spectrum of diethyl 4-acetyl-2-chlorophenylphosphonate 3pa
13C NMR Spectrum of diethyl 4-acetyl-2-chlorophenylphosphonate 3pa
HR-MS Spectrum of diethyl 4-acetyl-2-chlorophenylphosphonate
13P NMR Spectrum of diethyl acetyl-3-bromophenylphosphonate 3qa
1H NMR Spectrum of diethyl 4-acetyl-3-bromophenylphosphonate 3qa
13C NMR Spectrum of diethyl 4-acetyl-3-bromophenylphosphonate 3qa
HR-MS Spectrum of diethyl 4-acetyl-3-bromophenylphosphonate

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
77 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-6 P: 0-1 Br: 1-2

hxd-9 651 (3.391)
TOF MS El+

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>333.9979</td>
<td>333.9970</td>
<td>0.9</td>
<td>2.7</td>
<td>5.0</td>
<td>5546172.0</td>
<td>C12 H15 O4 P Br</td>
</tr>
</tbody>
</table>
13P NMR Spectrum of diethyl 5,6,7,8-tetrahydro5-oxo-2-naphthalenylphosphonate 3sa
\(^1\)H NMR Spectrum of diethyl 5,6,7,8-tetrahydro5-oxo-2-naphthalenylphosphonate 3sa
13C NMR Spectrum of diethyl 5,6,7,8-tetrahydro5-oxo-2-naphthalenylphosphonate 3sa
HR-MS Spectrum of diethyl 5,6,7,8-tetrahydro-5-oxo-2-naphthalenylphosphonate 3a
HMBC Spectrum of diethyl 5,6,7,8-tetrahydro-5-oxo-2-naphthalenylphosphonate 3sa
13P NMR Spectrum of diethyl butanoylphenylphosphonate 3ua
1H NMR Spectrum of diethyl 4-butoxoyphenylphosphonate 3ua
13C NMR Spectrum of diethyl 4-butanoylphenylphosphonate 3ua
HR-MS Spectrum of diethyl 4-butanoylphenylphosphonate

Tolerance = 0.4 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
48 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-50 H: 0-200 O: 0-5 P: 0-1

m/z 284.1178

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPW</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>284.1178</td>
<td>284.1177</td>
<td>0.1</td>
<td>0.4</td>
<td>5.0</td>
<td>5546849.0</td>
<td>Cl14 H21 O4 P</td>
</tr>
</tbody>
</table>