Chirality Extension of an Oxazine Building Block En Route to Total Syntheses of (+)-Hyacinthacine A$_2$ and Sphingofungin B

Seok-Hwi Park,‡a Xiangdan Jin,‡a Jong-Cheol Kang,‡a Changyoung Jung,‡a Seong-Soo Kim,‡a Sung-Soo Kim,‡a Kee-Young Lee, b and Won-Hun Ham* a

‡ School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
b Yonsung Fine Chemicals Co., Ltd., Hwaseong 445-944, Republic of Korea
whham@skku.edu

Supporting information

S2 1H NMR of syn-5a
S3 13C NMR of syn-5a
S4 1H NMR of anti-5a
S5 13C NMR of anti-5a
S6 NOESY of trans-6
S7 NOESY of cis-6
S8 1H NMR of syn-5b
S9 13C NMR of syn-5b
S10 1H NMR of anti-5b
S11 13C NMR of anti-5b
S12 1H NMR of syn-5c
S13 13C NMR of syn-5c
S14 1H NMR of anti-5c
S15 13C NMR of anti-5c
S16 1H NMR of syn-5d
S17 13C NMR of syn-5d
S18 1H NMR of anti-5d
S19 13C NMR of anti-5d
S20 1H NMR of syn-5e
S21 13C NMR of syn-5e
S22 1H NMR of anti-5e
S23 13C NMR of anti-5e
S24 1H NMR of syn-5f
S25 13C NMR of syn-5f
S26 1H NMR of anti-5f
S27 13C NMR of anti-5f
S28 1H NMR of precursor of 8
S29 13C NMR of precursor of 8
S30 1H NMR of 8
S31 13C NMR of 8
S32 1H NMR of 7
S33 13C NMR of 7
S34 1H NMR of 9
S35 13C NMR of 9
S36 1H NMR of 1
S37 13C NMR of 1
S38 Comparison of reported NMR data with those of 1
S39 1H NMR of 13
S40 13C NMR of 13
S41 1H NMR of 14
S42 13C NMR of 14
S43 1H NMR of 15
S44 13C NMR of 15
S45 1H NMR of 16
S46 13C NMR of 16
S47 1H NMR of 17
S48 13C NMR of 17
S49 1H NMR of 2
S50 13C NMR of 2
S51 Comparison of reported NMR data with those of 2
syn-5a (700 MHz, CDCl₃)
syn-5a (175 MHz, CDCl₃)
anti-5a (500 MHz, CDCl₃)
anti-5a (125 MHz, CDCl₃)
trans-6 (NOESY)
cis-6 (NOESY)

Acetal methyl

cis-6 (NOESY)

[Chemical structure diagram]

Acetal methyl

F1 Chemical Shift (ppm)

F2 Chemical Shift (ppm)
syn-5b (700 MHz, CDCl₃)

![NMR Spectrum of syn-5b](image)

NMR Data:
- **8.5 to 8.0 ppm:** 2.00, 3.73
- **7.5 to 7.0 ppm:** 1.01, 1.03, 1.08, 1.09, 0.97
- **6.5 to 6.0 ppm:** 0.87, 0.90
- **5.5 to 5.0 ppm:** 1.0, 1.1
- **4.5 to 4.0 ppm:** 1.5, 2.0, 3.0, 3.5
- **2.5 to 2.0 ppm:** 2.0, 2.5, 3.0
- **1.5 to 1.0 ppm:** 4.0, 4.5
- **0.5 to 0.0 ppm:** 6.4, 14.7
syn-5b (175 MHz, CDCl₃)
anti-5b (700 MHz, CDCl$_3$)
anti-5b (175 MHz, CDCl₃)
syn-5c (700 MHz, CDCl₃)
syn-5c (175 MHz, CDCl₃)

![NMR spectrum of syn-5c](image)

Diagram showing the NMR spectrum with peaks at various ppm values.
anti-5c (700 MHz, CDCl₃)
anti-5c (175 MHz, CDCl₃)
syn-5d (700 MHz, CDCl$_3$)
syn-5d (175 MHz, CDCl₃)
anti-5d (700 MHz, CDCl₃)
anti-5d (175 MHz, CDCl₃)
syn-5e (700 MHz, CDCl₃)
syn-5e (175 MHz, CDCl₃)
anti-5e (700 MHz, CDCl₃)
anti-5e (175 MHz, CDCl$_3$)
syn-5f (700 MHz, CDCl₃)
syn-5f (175 MHz, CDCl₃)

![Proton NMR spectrum of syn-5f](image)

Chemical Structure

- TBS: tert-butyldimethylsilyl group
- OH: hydroxyl group
- Ph: phenyl group

NMR Data

- 1H: 6.93, 7.23, 7.32, 7.42, 7.47, 7.74, 7.79
- 13C: 51.27, 53.28, 58.85, 65.87, 66.13, 69.78, 70.67, 70.87, 72.80

ppm Scale

- Range: 0 to 165
anti-5f (700 MHz, CDCl₃)
anti-5f (175 MHz, CDCl₃)
Precursor of 8 (700 MHz, CDCl₃)
Precursor of 8 (175 MHz, CDCl₃)
$8 (700 \text{ MHz, CDCl}_3)$
8 (175 MHz, CDCl₃)
7 (700 MHz, CDCl₃)
7 (175 MHz, CDCl$_3$)
9 (700 MHz, CDCl₃)
9 (175 MHz, CDCl₃)
1 (700 MHz, D$_2$O)
1 (175 MHz, D$_2$O)
Table 1. Comparison of reported 1H NMR data with those of 1.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Asano et al. 4 (natural product)</th>
<th>Fox et al. 5a (pH 7.6)</th>
<th>Fox et al. 5a (pH 9.0)</th>
<th>Izquierdo et al. 5i</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>D$_2$O</td>
<td>3.81 (t, $J = 8.8$ Hz, 1H)</td>
<td>3.87–3.76 (m, 3H)</td>
<td>3.79–3.71 (m, 3H)</td>
<td>3.88–3.80 (m, 3H)</td>
<td></td>
</tr>
<tr>
<td>H-2</td>
<td>3.80 (dd, $J = 11.8$, 3.9 Hz, 1H)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H-1</td>
<td>3.76 (dd, $J = 8.8$, 7.1 Hz, 1H)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H-8</td>
<td>3.67 (dd, $J = 11.8$, 6.5 Hz, 1H)</td>
<td>3.70 (dd, $J = 12.0$, 6.3 Hz, 1H)</td>
<td>3.63 (dd, $J = 12.1$, 6.0 Hz, 1H)</td>
<td>3.75–3.71 (m, 1H)</td>
<td></td>
</tr>
<tr>
<td>H-7a</td>
<td>3.32 (m, 1H)</td>
<td>3.37–3.30 (m, 1H)</td>
<td>3.37 (m, 1H)</td>
<td>3.40–3.36 (m, 1H)</td>
<td></td>
</tr>
<tr>
<td>H-5</td>
<td>2.96 (ddd, $J = 11.0$, 7.3, 5.9 Hz, 1H)</td>
<td>3.08–2.99 (m, 1H)</td>
<td>3.04 (broad dt, $J = 11.7$, 6.5 Hz, 1H)</td>
<td>3.10–3.05 (m, 1H)</td>
<td></td>
</tr>
<tr>
<td>H-5</td>
<td>2.81 (dt, $J = 11.0$, 5.6 Hz)</td>
<td>2.95–2.82 (m, 2H)</td>
<td>2.93–2.85 (m, 2H)</td>
<td>2.96–2.88 (m, 2H)</td>
<td></td>
</tr>
<tr>
<td>H-3</td>
<td>2.77 (ddd, $J = 8.8$, 6.5, 3.9 Hz, 1H)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H-7</td>
<td>1.97 (m, 1H)</td>
<td>2.07–1.91 (m, 2H)</td>
<td>1.96–1.72 (m, 4H)</td>
<td>2.06–2.00 (m, 1H)</td>
<td></td>
</tr>
<tr>
<td>H-6</td>
<td>1.90 (m, 1H)</td>
<td>-</td>
<td>-</td>
<td>2.00–1.95 (m, 1H)</td>
<td></td>
</tr>
<tr>
<td>H-6</td>
<td>1.82 (m, 1H)</td>
<td>-</td>
<td>1.91–1.77 (m, 2H)</td>
<td>-</td>
<td>1.93–1.85 (m, 2H)</td>
</tr>
<tr>
<td>H-7</td>
<td>1.77 (m, 1H)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Comparison of reported 13C NMR data with those of 1.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Asano et al. 4 (natural product)</th>
<th>Fox et al. 5a (pH 7.6)</th>
<th>Fox et al. 5a (pH 9.0)</th>
<th>Izquierdo et al. 5i</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>D$_2$O</td>
<td>82.9</td>
<td>82.5</td>
<td>81.09</td>
<td>79.4</td>
<td></td>
</tr>
<tr>
<td>C-1</td>
<td>79.8</td>
<td>79.3</td>
<td>77.72</td>
<td>76.3</td>
<td></td>
</tr>
<tr>
<td>C-2</td>
<td>72.1</td>
<td>72.2</td>
<td>71.47</td>
<td>69.3</td>
<td></td>
</tr>
<tr>
<td>C-3</td>
<td>69.2</td>
<td>69.7</td>
<td>69.42</td>
<td>66.9</td>
<td></td>
</tr>
<tr>
<td>C-7a</td>
<td>65.3</td>
<td>64.4</td>
<td>62.24</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td>C-5</td>
<td>57.7</td>
<td>57.8</td>
<td>57.05</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>C-6</td>
<td>32.5</td>
<td>32.4</td>
<td>31.19</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td>C-6</td>
<td>27.3</td>
<td>27.3</td>
<td>26.32</td>
<td>24.4</td>
<td></td>
</tr>
</tbody>
</table>
13 (175 MHz, CDCl₃)
14 (500 MHz, CDCl₃)
14 (125 MHz, CDCl$_3$)
15 (700 MHz, CDCl₃)
15 (175 MHz, CDCl₃)
16 (700 MHz, CDCl$_3$)
16 (175 MHz, CDCl₃)

[Diagram of chemical structure with spectral data]
17 (700 MHz, CDCl$_3$)
17 (175 MHz, CDCl$_3$)
2 (700 MHz, CD$_3$OD)
2 (175 MHz, CD₃OD)
Table 3. Comparison of reported 1H NMR data with those of 2.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Kobayashi et al.9</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD$_3$OD</td>
<td>CD$_3$OD</td>
</tr>
<tr>
<td>0.89 (t, $J = 6.4$ Hz, 3H)</td>
<td>0.91 (t, $J = 7.0$ Hz, 3H)</td>
<td></td>
</tr>
<tr>
<td>1.18–1.60 (m, 20H)</td>
<td>1.32–1.46 (m, 20H)</td>
<td></td>
</tr>
<tr>
<td>1.98–2.06 (m, 2H)</td>
<td>2.08–2.10 (m, 2H)</td>
<td></td>
</tr>
<tr>
<td>3.49 (brs, 1H)</td>
<td>3.52 (brs, 1H)</td>
<td></td>
</tr>
<tr>
<td>3.60 (d, $J = 6.9$ Hz, 1H)</td>
<td>3.64 (dd, $J = 6.5$, 1.7 Hz, 1H)</td>
<td></td>
</tr>
<tr>
<td>3.77 (d, $J = 3.6$ Hz, 1H)</td>
<td>3.78 (d, $J = 4.9$ Hz, 1H)</td>
<td></td>
</tr>
<tr>
<td>4.06–4.10 (m, 2H)</td>
<td>4.17–4.19 (m, 2H)</td>
<td></td>
</tr>
<tr>
<td>5.47 (dd, $J = 15.2$, 7.3 Hz, 1H)</td>
<td>5.51 (dd, $J = 15.4$, 7.4 Hz, 1H)</td>
<td></td>
</tr>
<tr>
<td>5.77 (dt, $J = 15.2$, 6.6 Hz, 1H)</td>
<td>5.80 (dt, $J = 14.6$, 6.4 Hz, 1H)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Comparison of reported 13C NMR data with those of 2.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Kobayashi et al.9</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD$_3$OD</td>
<td>CD$_3$OD</td>
</tr>
<tr>
<td></td>
<td>14.4</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>23.7</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>26.79</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>26.82</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>30.2</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>30.4</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td>30.6</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td>30.7</td>
<td>30.8</td>
</tr>
<tr>
<td></td>
<td>33.1</td>
<td>33.2</td>
</tr>
<tr>
<td></td>
<td>33.5</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>38.5</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td>60.8</td>
<td>61.0</td>
</tr>
<tr>
<td></td>
<td>69.4</td>
<td>69.7</td>
</tr>
<tr>
<td></td>
<td>72.5</td>
<td>72.6</td>
</tr>
<tr>
<td></td>
<td>75.2</td>
<td>75.3</td>
</tr>
<tr>
<td></td>
<td>76.0</td>
<td>76.1</td>
</tr>
<tr>
<td></td>
<td>130.2</td>
<td>130.4</td>
</tr>
<tr>
<td></td>
<td>135.5</td>
<td>135.7</td>
</tr>
<tr>
<td></td>
<td>172.4</td>
<td>171.9</td>
</tr>
</tbody>
</table>