Supplementary Information

PhI(OAc)$_2$ mediated decarboxylative sulfonylation of β-aryl-α,β-unsaturated carboxylic acids:

A synthesis of (E)-vinyl sulfones

Praewpan Katrun,a Sornsiri Hlekhlai,a Jatuporn Meesilp,a Manat Pohmakotr,a Vichai Reutrakul,a
Thaworn Jaipetch,b Darunee Soorukrama and Chutima Kuhakarna

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC),
Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.

bMahidol University and Center of Excellence for Innovation in Chemistry (PERCH-CIC),
Kanchanaburi Campus, Saiyok, Kanchanaburi 71150, Thailand.

E-mail: chutima.kon@mahidol.ac.th

Contents

General information S2
General procedure for the decarboxylative sulfonylation of β-aryl-α,β-unsaturated carboxylic acids S2
1H and 13C NMR spectra of products S3-S35
General information

All isolated compounds were characterized on the basis of 1H NMR and 13C NMR spectroscopic data, IR spectra, and HRMS data. 1H NMR and 13C NMR spectra were recorded on a Bruker AscendTM spectrometer. 1H NMR and 13C NMR chemical shifts are reported in ppm using tetramethylsilane (TMS) as an internal standard or residual nondeuterated solvent peak as an internal standard. Infrared spectra were recorded with a Bruker ALPHA FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded with a Bruker micro TOF spectrometer in the ESI mode. Melting points were recorded with a Sanyo Gallenkamp apparatus. Reactions were monitored by thin-layer chromatography and visualized by UV and a solution of KMnO$_4$. Cinnamic acids 1a, 1g, 1j, 1k, 1n, 1q and solvents were obtained from commercial sources and used without further purification. Unless otherwise noted, α,β-unsaturated carboxylic acid were synthesized according to literature procedures via Wittig reaction and Horner-Wadsworth-Emmons reaction. Purification of the reaction products was carried out by column chromatography on silica gel (0.063–0.200 mm). After column chromatography, analytically pure solid was obtained by crystallization from CH$_2$Cl$_2$–hexanes.

General procedures: Synthesis of vinyl sulfone from β-aryl-α,β-unsaturated carboxylic acid and sodium sulfinate. DIB (161.1 mg, 0.50 mmol) was added to a solution of β-aryl-α,β-unsaturated carboxylic acid (0.25 mmol) and sodium sulfinate (1.0 mmol) in DMF (3 mL) at room temperature and then reaction mixture was stirred at 100 ºC under air for 10-30 minutes. After completion of the reaction, the reaction was cooled to room temperature and was diluted with water (10 mL). Further stirring was followed by extraction with EtOAc (2 × 20 mL). The combined organic extracts were washed with H$_2$O (20 mL) and brine (20 mL), dried (MgSO$_4$), filtered, and concentrated (aspirator). The residue was purified by column chromatography using EtOAc–hexanes as eluent to afford the corresponding product.
1H and 13C NMR spectra

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

1C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

![NMR Spectrum](image)

13C NMR (100 MHz, CDCl$_3$)

![NMR Spectrum](image)
\(^1\)H NMR (400 MHz, acetone-\(d_6\))

\(^{13}\)C NMR (100 MHz, acetone-\(d_6\))
1H NMR (400 MHz, CDCl₃)

13C NMR (100 MHz, CDCl₃)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
$\text{H NMR (400 MHz, CDCl}_3$)

$\text{^13C NMR (100 MHz, CDCl}_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl₃)

![1H NMR Spectrogram](image)

13C NMR (100 MHz, CDCl₃)

![13C NMR Spectrogram](image)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \]

\[\text{13C NMR (100 MHz, CDCl}_3\text{)} \]
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
3za

$^1\text{H NMR (400 MHz, CDCl}_3\text{)}$

$^13\text{C NMR (100 MHz, CDCl}_3\text{)}$
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
3ab

1H NMR (400 MHz, CDCl$_3$)

3ab

13C NMR (100 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (100 MHz, CDCl$_3$)
$^{1}{\text{H}} \text{ NMR (400 MHz, CDCl}_3\text{)}$

$^{13}{\text{C}} \text{ NMR (100 MHz, CDCl}_3\text{)}$