Supplementary Information

Diene-transmissive hetero-Diels–Alder reaction of β,γ-unsaturated α-keto esters: facile access to optically active polyheterocycles

Takashi Otani,*ab Yumiko Tamai,a Kazunori Seki,a Tomohiro Kikuchi,a Taiichiro Miyazawa,a and Takao Saito*ab

a Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
b Research Center for Chirality, Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.

E-mail: totani@anan-nct.ac.jp (T.O.)
E-mail: tsaito@rs.kagu.tus.ac.jp (T.S.)

(Submitted to Org. Biomol. Chem.)

Contents

1. Experimental Details • • • • • S 2

1.1. General Information • • • • • S2

1.2. Initial Diels–Alder reaction • • • • • S2

1.3. Tebbe methylenation • • • • • S3

1.4. Second Diels–Alder reaction • • • • • S3

2. 1H and 13C NMR spectra of new compounds • • • • • S10

3. Copies of HPLC Chromatograms • • • • • S27
1 Experimental Details

1.1 General Information

All melting points were determined on a Yanaco melting point apparatus and are uncorrected. Infrared spectra were recorded on a Horiba FT-710 model spectrophotometer. 1H and 13C NMR spectral data were obtained with a Bruker Avance-600, a JEOL JNM-EX 500, or a JEOL JNM-EX 300 instrument and chemical shifts are reported in ppm down field from tetramethylsilane (TMS) using an internal standard of TMS or CDCl$_3$. HRMS analysis were performed on a Bruker Daltonics microTOF.

1.2. Initial Diels–Alder reaction

a) Under thermal conditions (Table 1, entry 1). A mixture of 1 (238 mg, 1.2 mmol), ethyl vinyl ether (2.76 mL, 24 mmol) in 1,2-dichloroethane (10 mL) was heated at reflux for 39 h. The reaction mixture was evaporated, and the resulting residue was chromatographed on a column of silica gel with CH$_2$Cl$_2$/hexane (1/2) as an eluent to give ethyl 2-ethoxy-4-phenyl-3,4-dihydro-2H-pyran-6-carboxylate (3) (305 mg, endo:exo = 88:12, 95%) as a colorless oil.1

b) With 20 mol % amount of Yb(OTf)$_3$ at −40 °C (Table 1, entry 2). To a cooled solution of 1 (98 mg, 0.48 mmol) and Yb(OTf)$_3$ (59.6 mg, 0.096 mmol) in CH$_2$Cl$_2$ (10 mL) at −40 °C was added ethyl vinyl ether (180 μL, 1.9 mmol). The mixture was stirred at the same temperature for 1 h and then quenched by addition of aqueous NaHCO$_3$. The organic layer was separated, washed with H$_2$O, dried over MgSO$_4$ and evaporated. The residue was chromatographed on a column of silica gel with CH$_2$Cl$_2$/hexane (1/2) as an eluent to give 3 (123 mg, endo:exo = 90:10, 93%) as a colorless oil.

c) With 20 mol % amount of Yb(OTf)$_3$ (Table 1, entry 4). To a heated solution of 1 (102 mg, 0.5 mmol) and Yb(OTf)$_3$ (62 mg, 0.1 mmol) in CH$_2$Cl$_2$ (10 mL) at 40 °C was added slowly ethyl vinyl ether (0.72 mL, 10 mmol, 0.25 mL/h, 3 h) using a syringe pump. The mixture was cooled to room temperature and then quenched by addition of aqueous NaHCO$_3$. The organic layer was separated, dried over MgSO$_4$ and evaporated. The resulting residue was chromatographed on a column of silica gel with CH$_2$Cl$_2$/hexane (1/2) as the eluent to give the adduct 3 (127 mg, endo:exo = 5:95, 92%) as a colorless oil.

d) Enantioselective reaction (Scheme 4).1a To a solution of 1 (803 mg, 3.93 mmol), molecular sieves 3Å (267 mg) and 20 (53 mg, 0.079 mmol, 2.0 mol%) in THF (5 mL) cooled at 0 °C was added ethyl vinyl ether (180 μL, 1.9 mmol). After stirring at the same temperature for 14 h, the mixture was evaporated. The residue was chromatographed on a column of silica gel with AcOEt/hexane (1/30) as an eluent to give (2R,4R)-31a (975 mg, endo:exo = 96:4, 89%, 98% ee) as a colorless oil. Ee was determined by HPLC analysis using a chiral column (Chiralpak IB: 4.6×150 mm, 254 nm, UV

1.3. Tebbe methylation

Typical procedure for Tebbe methylation: Synthesis of 2-ethoxy-6-(1-ethoxyvinyl)-4-phenyl-3,4-dihydro-2H-pyran (5): To a solution of endo-3 (300 mg, 1.08 mmol) in THF (0.8 mL) was added 0.5 M toluene solution of Tebbe reagent (2.60 mL, 1.30 mmol) at 0 °C. After stirring for 1 h, the reaction mixture was diluted with 5 mL of diethyl ether, quenched with 0.1 M aqueous NaOH (1 mL), and filtered through a pad of alumina with AcOEt/hexane (1/50). The filtrate was dried over MgSO4 and evaporated. The resulting residue was purified by passing a short column of alumina with AcOEt/hexane (1/50) as the eluent to give (2R*,4R*)-2-ethoxy-6-(1-ethoxyvinyl)-4-phenyl-3,4-dihydro-2H-pyran (endo-5) as a colorless oil (242 mg, 81%). 1H-NMR (500 MHz, CDCl3) δ 1.26 (t, J = 7.0 Hz, 3H), 1.30 (t, J = 7.0 Hz, 3H), 1.90 (ddd, J = 8.9, 10.9, 13.1 Hz, 1H), 2.27 (dddd, J = 1.2, 1.8, 6.7, 13.1 Hz, 1H), 3.63 (dq, J = 7.0, 9.8 Hz, 1H), 3.70 (ddd, J = 2.8, 6.7, 10.4 Hz, 1H), 3.78–3.84 (m, 2H), 4.02 (dq, J = 7.0, 9.8 Hz, 1H), 4.15 (d, J = 1.8 Hz, 1H), 4.68 (d, J = 1.8 Hz, 1H), 5.09 (dd, J = 1.8, 8.9 Hz, 1H), 5.45 (dd, J = 1.2, 2.8 Hz, 1H), 7.20–7.32 (m, 5H). 13C-NMR (76 MHz, CDCl3) δ 14.4 (CH3), 15.2 (CH3), 37.1 (CH2), 38.2 (CH), 63.1 (CH2), 64.4 (CH2), 82.4 (CH2), 100.0 (CH), 102.0 (CH), 126.4 (CH), 127.4 (2×CH), 128.4 (2×CH), 144.5 (C), 146.1 (C), 154.7 (C).

(2S*,4R*)-2-(ethylthio)-6-(1-ethoxyvinyl)-4-phenyl-3,4-dihydro-2H-pyran (endo-6): yellow oil. 1H-NMR (300 MHz, CDCl3) δ 1.30 (t, J = 6.8 Hz, 3H), 1.35 (t, J = 7.5 Hz, 3H), 1.95 (ddd, J = 11.0, 11.0, 13.4 Hz, 1H), 2.37 (dddd, J = 1.7, 1.8, 6.6, 13.4 Hz, 1H), 2.75 (dq, J = 7.5, 12.9 Hz, 1H) 2.84 (dq, J = 7.5, 12.9 Hz, 1H), 3.71 (ddd, J = 2.4, 6.6, 11.0 Hz, 1H), 3.76–3.85 (m, 2H), 4.15 (d, J = 1.8 Hz, 1H), 4.69 (d, J = 1.8 Hz, 1H), 5.22 (dd, J = 1.8, 11.0 Hz, 1H), 5.50 (dd, J = 1.7, 2.4 Hz, 1H), 7.19–7.33 (m, 5H). 13C-NMR (76 MHz, CDCl3) δ 14.4 (CH3), 15.2 (CH3), 24.7 (CH2), 37.8 (CH2), 39.2 (CH), 63.1 (CH2), 80.7 (CH), 82.6 (CH2), 101.9 (CH), 126.6 (CH), 127.3 (2×CH), 128.5 (2×CH), 144.3 (C), 148.0 (C), 154.5 (C).

(2S*,4R*)-2-ethoxy-6-(1-ethoxyvinyl)-4-phenyl-3,4-dihydro-2H-pyran (exo-5): colorless oil. 1H-NMR (500 MHz, CDCl3) δ 1.24 (t, J = 7.0 Hz, 3H), 1.31 (t, J = 7.0 Hz, 3H), 1.85 (ddd, J = 2.8, 11.0, 13.4 Hz, 1H), 2.15 (dddd, J = 1.2, 3.1, 6.1, 13.4 Hz, 1H), 3.65 (dq, J = 7.0, 9.8 Hz, 1H), 3.73 (ddd, J = 2.8, 6.1, 11.0 Hz, 1H), 3.78–3.84 (m, 2H), 3.90 (dq, J = 7.0, 9.8 Hz, 1H), 4.13 (d, J = 1.8 Hz, 1H), 4.67 (d, J = 1.8 Hz, 1H), 5.19 (dd, J = 2.8, 3.1 Hz, 1H), 5.54 (dd, J = 1.2, 2.8 Hz, 1H), 7.20–7.32 (m, 5H). 13C-NMR (126 MHz, CDCl3) δ 14.4 (CH3), 15.2 (CH3), 34.0 (CH), 35.7 (CH2), 63.1 (CH2), 63.8 (CH2), 81.9 (CH2), 96.6 (CH), 102.3 (CH), 126.4 (CH), 127.7 (2×CH), 128.5 (2×CH), 144.4 (C), 145.2 (C), 155.0 (C).

1.4. Second DA Reaction

a) Typical experimental procedure for the DA reaction with tetracyanoethylene (TCNE): Synthesis of 7 (Scheme 2). A mixture of endo-5 (97 mg, 0.35 mmol) and TCNE (54 mg, 0.43 mmol) in CH2Cl2 (10 mL) was stirred at room
temperature for 4 h. The reaction mixture was evaporated, and the resulting residue was chromatographed on a column of silica gel with AcOEt/hexane (1/2) as an eluent to give (2R*,4R*,4aR*)-2,8-diehtoxy-4-phenyl-3,4,4a,7-tetrahydro-2H-chromene-5,5,6,6-tetraarbonitrile (7) (125 mg, 88%) as colorless crystals. Mp: 101.3–102.0 °C. IR (KBr): v 1149.4 (s), 1380.8 (m), 1442.5 (m), 1689.3 (m), 2985.3 (s) cm⁻¹. 1H-NMR (600 MHz, CDCl₃) δ 1.30 (3H, t, J = 7.1 Hz), 1.32 (3H, t, J = 7.1 Hz), 2.22 (1H, ddd, J = 7.4, 11.5, 14.2 Hz), 2.37 (1H, ddd, J = 3.1, 5.2, 14.0 Hz), 3.08 (1H, d, J = 17.4 Hz), 3.14 (1H, ddd, J = 5.2, 11.5, 11.5 Hz), 3.24 (1H, dd, J = 3.1, 17.5 Hz), 3.40 (1H, dd, J = 2.1, 11.5 Hz), 3.65 (1H, dq, J = 7.1, 9.3 Hz), 3.96 (1H, dq, J = 7.1, 9.4 Hz), 3.99 (1H, dq, J = 7.1, 9.4 Hz), 4.17 (1H, dq, J = 7.1, 9.4 Hz), 4.85 (1H, dd, J = 3.1, 7.4 Hz), 7.41–7.47 (5H, m). 13C-NMR (151 MHz, CDCl₃) δ 15.1 (CH₃), 15.6 (CH₃), 33.8 (CH₂), 38.0 (CH₂), 39.7 (C), 43.1 (CH), 43.3 (C), 44.6 (CH), 65.3 (CH₂), 67.8 (CH₂), 100.7 (CH), 108.7 (C), 108.9 (C), 109.9 (C), 110.4 (C), 128.4 (2×CH), 129.7 (CH), 129.8 (2×CH), 131.0 (C), 131.0 (C), 137.3 (C). HRMS (ESI) Calcd for C₂₃H₂₂NaO₃ [M+Na]⁺: 425.1590, Found: 425.1584. Anal. Calcd for C₂₃H₂₂NaO₃: C, 62.64; H, 5.51; N, 10.32. Found: C, 62.60; H, 5.57; N, 13.61.

(2S*,4R*,4aR*)-8-ethoxy-2-(ethylthio)-4-phenyl-3,4,4a,7-tetrahydro-2H-chromene-5,5,6,6-tetraarbonitrile (8): Colorless crystals. Mp: 134.7–136.4 °C. IR (KBr): v 1079.9 (s), 1204.3 (s), 1450.2 (m), 1689.3 (m), 2977.6 (s) 3448.1 (br) cm⁻¹. 1H-NMR (500 MHz, CDCl₃) δ 1.32 (t, J = 7.0 Hz, 3H), 1.36 (t, J = 7.3 Hz, 3H), 2.30–2.34 (m, 2H), 2.77 (dq, J = 7.3, 12.8 Hz, 1H), 2.83 (dq, J = 7.3, 12.8 Hz, 1H), 3.09 (dd, J = 0.9, 17.7 Hz, 1H), 3.14–3.19 (m, 1H), 3.24 (dd, J = 2.7, 17.7 Hz, 1H), 3.29 (dd, J = 0.9, 2.7, 11.3 Hz, 1H), 3.93 (dq, J = 7.0, 9.5 Hz, 1H), 4.15 (dq, J = 7.0, 9.5 Hz, 1H), 4.81–4.87 (m, 1H), 7.38–7.40 (m, 2H), 7.43–7.45 (m, 3H). 13C-NMR (126 MHz, CDCl₃) δ 14.9 (CH₃), 15.4 (CH₃), 25.0 (CH₂), 33.5 (CH₂), 38.6 (CH₂), 39.6 (C), 43.4 (C), 44.8 (CH), 46.1 (CH), 67.8 (CH₂), 83.6 (CH), 108.6 (C), 108.9 (C), 109.8 (C), 110.3 (C), 129.72 (CH), 129.73 (4×CH), 132.1 (C), 132.3 (C), 136.9 (C). HRMS (ESI) Calcd for C₂₃H₂₂NaO₃ [M+Na]⁺: 441.1356, Found: 441.1373. Anal. Calcd for C₂₃H₂₂NaO₃:S: C, 66.01; H, 5.50; N, 13.39. Found: C, 65.61; H, 5.38; N, 13.17.

(2S*,4R*,4aR*)-2,8-diehtoxy-4-phenyl-3,4,4a,7-tetrahydro-2H-chromene-5,5,6,6-tetraarbonitrile (16): Colorless crystals. Mp 101.3–102.0 °C. IR (KBr): v 1149.4 (s), 1380.8 (m), 1442.5 (m), 1689.3 (m), 2985.3 (s) cm⁻¹. 1H-NMR (600 MHz, CDCl₃) δ 1.30 (3H, t, J = 7.1 Hz), 1.32 (3H, t, J = 7.1 Hz), 2.22 (1H, ddd, J = 7.4, 11.5, 14.2 Hz), 2.37 (1H, ddd, J = 3.1, 5.2, 14.0 Hz), 3.08 (1H, d, J = 17.4 Hz), 3.14 (1H, ddd, J = 5.2, 11.5, 11.5 Hz), 3.24 (1H, dd, J = 3.1, 17.5 Hz), 3.40 (1H, dd, J = 2.1, 11.5 Hz), 3.65 (1H, dq, J = 7.1, 9.3 Hz), 3.96 (1H, dq, J = 7.1, 9.4 Hz), 3.99 (1H, dq, J = 7.1, 9.4 Hz), 4.17 (1H, dq, J = 7.1, 9.4 Hz), 4.85 (1H, dd, J = 3.1, 7.4 Hz), 7.41–7.47 (5H, m). 13C-NMR (151 MHz, CDCl₃) δ 15.1 (CH₃), 15.6 (CH₃), 33.8 (CH₂), 38.0 (CH₂), 39.7 (C), 43.1 (CH), 43.3 (C), 44.6 (CH), 65.3 (CH₂), 67.8 (CH₂), 100.7 (CH), 108.7 (C), 108.9 (C), 109.9 (C), 110.4 (C), 128.4 (2×CH), 129.7 (CH), 129.8 (2×CH), 130.96 (C), 130.99 (C), 137.3 (C). HRMS (ESI) Calcd for C₂₃H₂₂NaO₃ [M+Na]⁺: 425.1593, Found: 425.1584.
(2R,4R,4aR)-2,8-dioxy-4-phenyl-3,4,4a,7-tetrahydro-2H-chromene-5,5,6,6-tetracarbonitrile (–7): Colorless solid. Mp: 48.6–50.0 °C. [α]20D = –78.7 (c 1.06, methanol). HPLC conditions: Chiralpak IC-3: 4.6×250 mm, 254 nm, UV detector, rt, eluent: iPrOH/hexane (1/20), flow rate: 1 mL/min, retention time 22.0 min for minor isomer and 22.8 min for major isomer.

b) Typical experimental procedure for the DA reaction with N-phenyl-1,3,5-triazole-2,4-dione (PTAD): Synthesis of 10 and 11 (Scheme 2). To a stirred solution of endo-5 (66 mg, 0.22 mmol) in CH2Cl2 (5 mL) was added PTAD (48 mg, 0.27 mmol) at room temperature. After being stirred for 3 h, the reaction mixture was evaporated. The residue was chromatographed on a column of silica gel with AcOEt/hexane (1/2) as an eluent to give monoadduct 10 (56 mg, 53%) as colorless crystals and bisadduct 11 (23 mg, 15%) as colorless crystals.

(8S*,10S*,10aS*)-6-ethoxy-8-(ethylthio)-2,10-diphenyl-8,9,10a-tetrahydro-1H,5H-pyra-no[3,2-c][1,2,4]triazolo[1,2-a]pyridazine-1,3(2H)-dione (10): Colorless crystals. Mp: 181.2–183.6 °C.

\[\text{H-NMR (500 MHz, CDCl}_3 \] δ 1.30 (t, J = 7.0 Hz, 3H), 1.40 (t, J = 7.3 Hz, 3H), 2.30 (ddd, J = 2.4, 4.0, 14.0 Hz, 1H), 2.43 (ddd, J = 11.6, 12.2, 14.0 Hz, 1H), 2.82 (dq, J = 7.3, 12.8 Hz, 1H), 2.90 (dq, J = 7.3, 12.8 Hz, 1H), 3.29 (ddd, J = 4.0, 10.4, 12.2 Hz, 1H), 3.91 (dd, J = 1.5, 14.7 Hz, 1H), 4.08 (dq, J = 7.0, 9.5 Hz, 1H), 4.24 (dq, J = 7.0, 9.5 Hz, 1H), 4.28 (d, J = 14.7 Hz, 1H), 4.55 (d, J = 10.4 Hz, 1H), 4.96 (dd, J = 2.4, 11.6 Hz, 1H), 7.15 (d, J = 7.6 Hz, 2H), 7.21–7.24 (m, 2H), 7.27–7.32 (m, 4H), 7.36 (dd, J = 7.6, 7.6 Hz, 2H).

\[\text{C-NMR (76 MHz, CDCl}_3 \] δ 14.9 (CH3), 15.5 (CH3), 25.4 (CH2), 37.4 (CH2), 47.1 (CH2), 49.2 (CH), 56.6 (CH), 68.4 (CH2), 86.2 (CH), 125.3 (2CH), 127.9 (2CH), 128.0 (CH), 128.1 (CH), 128.7 (2CH), 128.9 (2CH), 131.0 (C), 133.6 (C), 134.3 (C), 138.9 (C), 141.9 (C), 154.8 (C). HRMS (ESI) Calcd for C25H22N2O4S [M+]: 465.1722, Found: 465.1714.

(2S*,4S*,4aS*,10aR*,15aS*)-10a-ethoxy-2-(ethylthio)-4,7,13-triphenylhexahydro-6H,12H-
[1,2,4]triazolo[1’;2’;1:2][1,2]diazeto[3,4-d]pyra-no[3,2-c][1,2,4]triazolo[1,2-a]pyridazine-6,8,12,14(7H,13H)-
tetraone (11): Colorless crystals. Mp: 194.1–195.0 °C. IR (KBr): ν 1396.2 (m), 1419.4 (m), 1727.9 (s) cm⁻¹.

\[\text{H-NMR (600 MHz, CDCl}_3 \] δ 1.40 (t, J = 7.2 Hz, 3H), 1.42 (t, J = 7.2 Hz, 3H), 2.28 (ddd, J = 2.3, 3.8, 14.0 Hz, 1H), 2.37 (ddd, J = 11.3, 12.1, 14.0 Hz, 1H), 2.86 (dq, J = 7.2, 12.5 Hz, 1H), 2.94 (dq, J = 7.2, 12.5 Hz, 1H), 3.19 (ddd, J = 3.8, 12.1, 12.1 Hz, 1H), 3.94 (d, J = 14.0 Hz, 1H), 4.18 (dq, J = 7.2, 9.1 Hz, 1H), 4.29 (dq, J = 7.2, 9.1 Hz, 1H), 5.04 (d, J = 12.1 Hz, 1H), 5.19 (d, J = 14.0 Hz, 1H), 5.27 (dd, J = 2.3, 11.3 Hz, 1H), 6.78–6.80 (m, 2H), 7.22–7.36 (m, 13H).

\[\text{C-NMR (151 MHz, CDCl}_3 \] δ 15.1 (CH3), 15.3 (CH3), 24.8 (CH2), 35.7 (CH2), 43.9 (CH2), 44.8 (CH), 54.7 (CH), 62.6 (CH2), 81.0 (CH), 93.7 (C), 94.3 (C), 124.9 (2CH), 125.6 (2CH), 127.6 (2CH), 128.3 (CH), 128.5 (CH), 128.8 (CH), 128.9 (2CH), 129.1 (2CH), 129.2 (2CH), 130.3 (C), 130.7 (C), 136.6 (C), 148.5 (C), 149.1 (C), 155.9 (C), 156.6 (C). HRMS (ESI) Calcd for C33H34N4O4S [M+]: 640.2104, Found: 640.2111.

(8R*,10S*,10aS*)-6,8-dioxy-2,10-diphenyl-8,9,10a-tetrahydro-1H,5H-pyra-no[3,2-c][1,2,4]triazolo[1,2-
a]pyrida- zine-1,3(2H)-dione (9): Mp: 213.7–215.0 °C. IR (KBr): ν 1419.6 (s), 1720.2 (s), 1781.9 (m) cm⁻¹.

\[\text{H-NMR (600 MHz, CDCl}_3 \] δ 1.31 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H), 2.26 (ddd, J = 2.6, 4.5, 14.0 Hz, 1H), 2.33 (ddd, J = 8.7, 12.1, 14.0 Hz, 1H), 3.23 (ddd, J = 4.5, 10.6, 12.1 Hz, 1H), 3.71 (dq, J = 7.2, 9.4 Hz, 1H), 3.90 (dd, J = 1.5,
14.7 Hz, 1H), 4.10 (dq, J = 7.2, 9.4 Hz, 1H), 4.12 (dq, J = 7.2, 9.8 Hz, 1H), 4.26 (d, J = 14.8 Hz, 1H), 4.28 (dq, J = 7.2, 9.8 Hz, 1H), 4.56 (d, J = 10.6 Hz, 1H), 4.84 (dd, J = 2.6, 8.7 Hz, 1H), 7.17 (d, J = 7.6 Hz, 2H), 7.23 (d, J = 7.6 Hz, 2H), 7.27–7.31 (m, 4H), 7.36 (dd, J = 7.6, 7.6 Hz, 2H). 13C-NMR (126 MHz, CDCl3) δ 15.1 (CH3), 15.6 (CH3), 37.0 (CH2), 46.2 (CH), 47.2 (CH2), 56.6 (CH), 65.4 (CH2), 68.3 (CH2), 103.9 (CH), 125.2 (2×CH), 127.97 (2×CH), 128.00 (2×CH), 128.7 (2×CH), 128.9 (2×CH), 130.7 (C), 131.1 (C), 133.9 (C), 139.2 (C), 149.1 (C), 154.9 (C). HRMS (ESI) Calcd for C25H26N3O5 [M+H]+: 450.2023, Found: 450.2028.

(8S*,10S*,10aS*)-6,8-diethoxy-2,10-diphenyl-8,9,10a-tetrahydro-1H.5H-pyran[3,2-c][1,2,4]triazolo[1,2-a]-pyridazine-1,3(2H)-dione (17): Colorless crystals. Mp 147.9–148.8 °C. 1H-NMR (600 MHz, CDCl3) δ 1.26 (t, J = 7.2 Hz, 3H), 1.29 (t, J = 7.2 Hz, 3H), 2.15 (dd, J = 3.4, 13.6 Hz, 1H), 2.45 (dd, J = 3.4, 13.6 Hz, 1H), 3.60 (dq, J = 7.2, 9.4 Hz, 1H), 3.62 (dd, J = 3.4, 10.6, 13.6 Hz, 1H), 3.92 (d, J = 14.4 Hz, 1H), 3.94 (dq, J = 7.2, 9.4 Hz, 1H), 4.05 (dq, J = 7.2, 9.4 Hz, 1H), 4.18 (dq, J = 7.2, 9.4 Hz, 1H), 4.33 (d, J = 14.4 Hz, 1H), 4.52 (d, J = 10.6 Hz, 1H), 5.16 (d, J = 3.4 Hz, 1H), 7.17 (d, J = 7.6 Hz, 2H), 7.23 (d, J = 7.6 Hz, 2H), 7.27–7.31 (m, 4H), 7.36 (dd, J = 7.6, 7.6 Hz, 2H). 13C-NMR (151 MHz, CDCl3) δ 15.0 (CH3), 15.5 (CH3), 36.2 (CH2), 43.4 (CH2), 47.3 (CH2), 57.3 (CH), 64.1 (CH), 67.9 (CH2), 99.5 (CH), 125.3 (2×CH), 127.9 (CH), 128.0 (CH), 128.1 (2×CH), 128.6 (2×CH), 129.0 (2×CH), 129.9 (C), 131.2 (C), 135.0 (C), 139.5 (C), 149.1 (C), 155.0 (C). HRMS (ESI) Calcd for C23H27N3NaO3 [M+Na]+: 472.1843, Found: 472.1833.

c) Typical experimental procedure for the DA reaction with p-toluensulfonyl isocyanate: Synthesis of 12 (Scheme 2). To a solution of endo-5 (86 mg, 0.31 mmol) in CH2Cl2 (10 mL) was added p-toluensulfonyl isocyanate (70 μL, 0.47 mmol). After being stirred at room temperature for 4 h, the reaction was quenched with aqueous NaHCO3. The organic phase was separated, dried over MgSO4 and evaporated. The residue was chromatographed on a column of silica gel with AcOEt/hexane (1:2) as an eluent to give (2R*,4S*,4aR*)-2,8-diethoxy-4-phenyl-5-tosyl-3,4,4a,5- tetrahydro-2H-pyran[3,2-b]pyridin-6-ol (12) (132 mg, 90%) as colorless crystals. Mp: 127.3–128.0 °C. IR (KBr): ν 1164.8 (s), 1434.8 (s), 1604.5 (s), 1689.3 (s), 3286.1 (br) cm⁻¹. 1H-NMR (500 MHz, CDCl3) δ 1.22 (t, J = 7.0 Hz, 3H), 1.47 (t, J = 7.0 Hz, 3H), 1.88 (ddd, J = 8.9, 10.4, 13.4 Hz, 1H), 2.30 (ddd, J = 0.9, 1.8, 6.7, 13.4 Hz, 1H), 2.42 (s, 3H), 3.59 (dq, J = 7.0, 9.5 Hz, 1H), 3.71 (ddd, J = 2.7, 6.7, 10.4 Hz, 1H), 3.95 (dq, J = 7.0, 9.5 Hz, 1H), 4.14 (dq, J = 7.0, 9.8 Hz, 1H), 4.21 (dq, J = 7.0, 9.8 Hz, 1H), 5.09 (dd, J = 1.8, 8.9 Hz, 1H), 5.43 (dd, J = 0.9, 2.8 Hz, 1H), 5.59 (s, 1H), 7.15–7.18 (m, 2H), 7.24 (tt, J = 1.2, 7.3 Hz, 1H), 7.29–7.33 (m, 4H), 7.97–8.00 (m, 2H), 9.82 (s, 1H). 13C-NMR (151 MHz, CDCl3) δ 15.0 (CH3), 15.3 (CH3), 21.5 (CH3), 36.6 (CH2), 38.2 (CH), 64.8 (CH2), 70.4 (CH2), 100.3 (CH), 105.5 (CH), 109.9 (CH), 126.9 (CH), 127.1 (2×CH), 128.4 (2×CH), 128.7 (2×CH), 129.3 (2×CH), 136.1 (C), 142.9 (C), 144.6 (C), 144.8 (C), 160.0 (C), 162.1 (C). HRMS (ESI) Calcd for C25H23N3NaO3S [M+Na]+: 494.1608, Found: 494.1599.

(2S*,4S*,4aR*)-8-ethoxy-2-(ethylthio)-4-phenyl-5-tosyl-3,4,4a,5-tetrahydro-2H-pyran[3,2-b]pyridin-6-ol (13): Colorless crystals. Mp 112.1–115.8 °C. 1H-NMR (500 MHz, CDCl3) δ 1.30 (t, J = 7.3 Hz, 3H, SCH2CH3), 1.48 (t, J = 7.0 Hz, 3H), 1.94 (ddd, J = 11.0, 11.0 13.7 Hz, 1H), 2.40 (ddddd, J = 1.2, 1.8, 6.7, 13.7 Hz, 1H), 2.42 (s, 3H), 2.71 (dq, J = 7.3, 12.8 Hz, 1H), 2.77 (dq, J = 7.3, 12.8 Hz, 1H), 3.72
(dd, J = 2.4, 6.7, 11.0 Hz, 1H), 4.14 (dq, J = 7.0, 9.8 Hz, 1H), 4.21 (dq, J = 7.0, 9.8 Hz, 1H), 5.21 (dd, J = 1.8, 11.0 Hz, 1H), 5.47 (dd, J = 1.2, 2.4 Hz, 1H), 5.57 (s, 1H), 7.14–7.17 (m, 2H), 7.25 (tt, J = 1.5, 7.3 Hz, 1H), 7.30–7.34 (m, 4H), 7.98 (d, J = 8.2 Hz, 2H), 9.83 (s, 1H). 13C-NMR (76 MHz, CDCl3) δ 14.9 (CH3), 15.3 (CH3), 21.6 (CH3), 24.7 (CH2), 37.1 (CH2), 39.3 (CH), 70.4 (CH2), 81.3 (CH), 105.6 (CH), 109.9 (CH), 127.05 (2×CH), 127.12 (CH), 128.4 (2×CH), 128.8 (2×CH), 129.4 (2×CH), 135.9 (C), 142.7 (C), 144.7 (C), 146.6 (C), 159.9 (C), 162.1 (C). HRMS (ESI) Calcd for C25H29NNaO4S2 [M+Na]+: 488.1560, Found: 488.1567.

(2S*,4S*,4aR*)-2,8-diehtoxy-4-phenyl-5-tosyl-3,4,4a,5-tetrahydro-2H-pyran[3,2-b]pyridin-6-ol (18): Colorless crystals. Mp: 126.9–127.8 °C. 1H-NMR (500 MHz, CDCl3) δ 1.21 (t, J = 7.0 Hz, 3H), 1.47 (t, J = 7.0 Hz, 3H), 1.80 (dd, J = 2.4, 11.3, 13.4 Hz, 1H), 2.16 (dddd, J = 1.2, 2.4, 6.1, 13.4 Hz, 1H), 2.42 (s, 3H), 3.61 (dq, J = 7.0, 9.8 Hz, 1H), 3.74 (dd, J = 2.4, 6.1, 11.3 Hz, 1H), 3.82 (dq, J = 7.0, 9.8Hz, 1H), 4.16 (dq, J = 7.0, 9.8 Hz, 1H), 4.19 (dq, J = 7.0, 9.8 Hz, 1H), 5.18 (dd, J = 2.4, 2.4 Hz, 1H), 5.53 (dd, J = 1.2, 2.4 Hz, 1H), 5.62 (s, 1H), 7.18–7.21 (m, 2H), 7.23–7.27 (m, 1H), 7.30–7.35 (m, 4H), 7.99 (d, J = 8.24 Hz, 2H), 9.88 (br s, 1H). 13C-NMR (126 MHz, CDCl3) δ 15.1 (CH3), 15.3 (CH3), 21.6 (CH3), 34.1 (CH), 35.2 (CH2), 64.3 (CH2), 70.6 (CH2), 97.1 (CH), 105.4 (CH), 110.4 (CH), 126.8 (CH), 127.4 (2×CH), 128.4 (2×CH), 128.8 (2×CH), 129.4 (2×CH), 136.1 (C), 143.1 (C), 143.6 (C), 144.6 (C), 160.4 (C), 162.2 (C). HRMS (ESI) Calcd for C23H29NO6SNa [M+Na]+: 494.1606, Found: 494.1610.

(2R,4S,4aR*)-2,8-diehtoxy-4-phenyl-5-tosyl-3,4,4a,5-tetrahydro-2H-pyran[3,2-b]pyridin-6-ol (–)–12: Colorless solid. Mp: 45.6–46.1 °C. [α]20 d = −9.45 (c 0.82, methanol).

d) Typical experimental procedure for the DA reaction with N-phenylmaleimide: Synthesis of 15 (Scheme 3). A mixture of endo-6 (57.9 mg, 0.20 mmol) and N-phenylmaleimide (51.0 mg, 0.30 mmol) in toluene (1.5 mL) was heated at 80 °C for 48 h. The mixture was evaporated, and the resulting residue was chromatographed by preparative TLC with hexane/AcOEt (5:1) to give (3aR*,7S*,9R*,9aR*,9bS*)-5-ethoxy-7-(ethylthio)-2,9-diphenyl-3a,7,8,9,9a,9b-hexahydrothiopyran[3,2-e]isooindole-1,3(2H,4H)-dione (15) (79.5 mg, 86%) as pale yellow crystals. Mp: 140.8–141.3 °C. 1H-NMR (600 MHz, CDCl3) δ 1.22 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.6 Hz, 3H), 1.76 (dt, J = 10.1, 13.4 Hz, 1H), 2.39 (ddd, J = 3.1, 6.7, 13.7 Hz, 1H), 2.48 (ddd, J = 1.5, 7.5, 15.5 Hz, 1H), 2.52 (ddd, J = 1.4, 5.3, 11.9 Hz, 1H), 2.69 (dq, J = 12.8, 7.6 Hz, 1H), 2.83 (d, J = 13.7 Hz, 1H), 2.84 (dq, J = 13.0, 7.5 Hz, 1H), 2.94 (ddd, J = 5.1, 8.8 Hz, 1H), 3.10 (ddd, J = 1.5, 7.5, 8.7 Hz, 1H), 3.82–3.94 (m, 3H), 5.63 (dd, J = 6.7, 10.1 Hz, 1H), 7.20–7.46 (m, 10H). 13C-NMR (150 MHz, CDCl3) δ 14.8 (CH3), 15.6 (CH3), 25.0 (CH3), 28.3 (CH2), 37.1 (CH), 37.6 (CH2), 40.6 (CH), 41.5 (CH), 44.3 (CH), 66.4 (CH2), 81.9 (CH), 126.5 (2×CH), 127.2 (CH), 127.9 (2×CH), 128.69 (CH), 128.72 (2×CH), 129.1 (2×CH), 130.7 (C), 131.8 (C), 133.9 (C), 141.8 (C), 176.5 (C), 178.4 (C). HRMS (EI) calcd for C27H29NO4S [M]+: 463.1817, found: 463.1811.

(3aR*,7R*,9R*,9aR*,9bS*)-5,7-Diehtoxy-2,9-diphenyl-3a,7,8,9,9a,9b-hexahydrothiopyran[3,2-e]isooindole-1,3(2H,4H)-dione (14): Colorless crystals. Mp: 161.3–161.8 °C. IR (ATR): ν 1377.9 (s), 1455.0 (s), 1597.7 (s), 1703.8 (s),
2928.4 (s), 2974.7 (s), 3031.6 (s), 3063.4 (s) cm\(^{-1}\). \(^1\)H-NMR (500 MHz, CDCl\(_3\)) \(\delta\) 1.25 (dd, \(J = 7.0, 7.0\) Hz, 3H), 1.26 (dd, \(J = 7.0, 7.0\) Hz, 3H), 1.84 (ddd, \(J = 7.7, 13.9, 13.9\) Hz, 1H), 2.34 (ddd, \(J = 3.0, 6.2, 13.9\) Hz, 1H), 2.45 (ddd, \(J = 1.1, 7.4, 15.5\) Hz, 1H), 2.55 (ddd, \(J = 1.1, 5.2, 11.7\) Hz, 1H), 2.84 (ddd, \(J = 1.2, 15.5\) Hz, 1H), 2.96 (ddd, \(J = 5.2, 8.7\) Hz, 1H), 3.12 (ddd, \(J = 1.2, 7.4, 8.7\) Hz, 1H), 3.61 (dq, \(J = 9.5, 7.0\) Hz, 1H), 3.80 (ddd, \(J = 3.1, 11.7, 13.9\) Hz, 1H), 3.88 (dq, \(J = 7.0, 9.4\) Hz, 1H), 3.91 (dq, \(J = 7.0, 9.4\) Hz, 1H), 4.00 (dq, \(J = 9.5, 7.0\) Hz, 1H), 5.19 (dd, \(J = 6.2, 7.7\) Hz, 1H), 7.29–7.61 (m, 10H). \(^{13}\)C-NMR (126 MHz, CDCl\(_3\)) \(\delta\) 15.0 (CH\(_3\)), 15.6 (CH\(_3\)), 28.3 (CH\(_2\)), 35.3 (CH), 37.4 (CH\(_2\)), 40.9 (CH), 41.4 (CH), 44.6 (CH), 63.9 (CH\(_2\)), 66.3 (CH\(_2\)), 100.1 (CH), 126.5 (2×CH), 127.1 (CH), 128.0 (2×CH), 128.65 (C), 128.67 (2×CH), 129.1 (2×CH), 131.4 (C), 131.8 (C), 132.7 (C), 142.1 (C), 176.5 (C), 178.4 (C). HRMS (ESI) calcld for C\(_{29}\)H\(_{30}\)NO\(_4\)Na [M+Na\(^+\)]: 470.1938, found: 470.1937.

(3aR*,5S*,7S*,9S*,9bR*)-5,7-diethoxy-2,9-diphenyl-3a,5,8,9,9b-hexahydropyrano[3,2-e]isoindole-1,3(2H,4H)-dione (19): Colorless solid. \(^1\)H-NMR (600 MHz, CDCl\(_3\)) \(\delta\) 1.12 (t, \(J = 7.0\) Hz, 3H), 1.23 (t, \(J = 7.0\) Hz, 3H), 2.03 (ddd, \(J = 2.4, 6.1, 16.0\) Hz, 1H), 2.05 (ddd, \(J = 2.4, 11.1, 16.0\) Hz, 1H), 2.35 (ddd, \(J = 2.4, 7.0, 15.6\) Hz, 1H), 2.70 (ddd, \(J = 2.4, 6.0, 11.1\) Hz, 1H), 2.86 (dd, \(J = 1.9, 15.6\) Hz, 1H), 2.98 (dd, \(J = 6.0, 9.0\) Hz, 1H), 3.08 (ddd, \(J = 1.9, 7.0, 9.0\) Hz, 1H), 3.57 (dq, \(J = 9.6, 7.0\) Hz, 1H), 3.71 (dq, \(J = 9.7, 6.9\) Hz, 1H), 3.77 (dq, \(J = 9.7, 7.1\) Hz, 1H), 3.85 (dq, \(J = 9.7, 7.0\) Hz, 1H), 4.47 (ddd, \(J = 6.1, 11.1, 11.1\) Hz, 1H), 5.18 (dd, \(J = 2.4, 2.4\) Hz, 1H), 7.22–7.52 (m, 10H). \(^{13}\)C-NMR (126 MHz, CDCl\(_3\)) \(\delta\) 15.1 (CH\(_3\)), 15.5 (CH\(_3\)), 26.0 (CH\(_2\)), 31.1 (CH), 35.6 (CH\(_2\)), 40.0 (CH), 40.6 (CH), 41.1 (CH), 63.6 (CH\(_2\)), 64.5 (CH\(_3\)), 96.5 (CH), 126.3 (2×CH), 127.0 (CH), 128.2 (2×CH), 128.6 (CH), 128.7 (2×CH), 129.1 (2×CH), 130.1 (C), 132.0 (C), 133.3 (C), 143.7 (C), 176.0 (C), 178.5 (C). HRMS (ESI) calcld for C\(_{29}\)H\(_{30}\)NO\(_4\)Na [M+Na\(^+\)]: 470.1939, found: 470.1938.

(3aR*,5S*,7S*,9S*,9bR*)-5,7-diethoxy-2,9-diphenyl-3a,5,8,9,9b-hexahydropyrano[3,2-e]isoindole-1,3(2H,4H)-dione (19'): Colorless solids. Mp: 42.4–42.8 °C. IR (NaCl): \(\nu\) 2924, 1712 cm\(^{-1}\). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 1.06 (t, \(J = 7.0\) Hz, 3H), 1.22 (t, \(J = 7.0\) Hz, 3H), 1.87 (ddd, \(J = 2.6, 7.7, 14.4\) Hz, 1H), 2.02 (ddd, \(J = 2.5, 9.8, 13.4\) Hz, 1H), 2.25 (ddd, \(J = 4.0, 6.5, 13.4\) Hz, 1H), 2.83 (ddd, \(J = 1.4, 2.8, 14.4\) Hz, 1H), 3.06 (ddd, \(J = 1.4, 7.7, 9.4\) Hz, 1H), 3.27 (d, \(J = 9.4\) Hz, 1H), 3.43 (dq, \(J = 8.9, 7.1\) Hz, 1H), 3.57. (dq, \(J = 8.9, 7.1\) Hz, 1H), 3.59 (dq, \(J = 9.4, 7.1\) Hz, 1H), 3.90 (dd, \(J = 2.8, 2.6\) Hz, 1H), 3.92 (dq, \(J = 7.1, 9.4\) Hz, 1H), 4.20 (dd, \(J = 6.5, 9.8\) Hz, 1H), 5.08 (dd, \(J = 2.5, 4.0\) Hz, 1H), 7.29–7.61 (m, 10H, Ph). \(^{13}\)C-NMR (150 MHz, CDCl\(_3\)) \(\delta\) 15.1 (CH\(_3\)), 15.4 (CH\(_3\)), 27.9 (CH), 35.3 (CH), 36.5 (CH), 36.8 (CH), 39.8 (CH), 63.6 (CH\(_2\)), 64.7 (CH\(_2\)), 72.7 (CH), 96.3 (CH) 105.9 (C) 126.5 (2×CH) 126.8 (CH) 128.3 (CH) 128.7 (2×CH) 128.85 (2×CH) 128.93 (2×CH) 132.4 (C) 143.1 (C) 148.7 (C) 176.4 (C) 178.8 (C). HRMS (ESI) calcld for C\(_{27}\)H\(_{26}\)NO\(_3\) [M\(^+\)]: 447.2046, found: 447.2046.

(3aR,7R,9R,9aR,9bS)-5,7-diethoxy-2,9-diphenyl-3a,7,8,9,9a,9b-hexahydropyrano[3,2-e]isoindole-1,3(2H,4H)-dione (––14): Colorless solids. Mp: 73.9–80.0 °C. \([\alpha]_D^{20} = –105.5\) (c 1.00, methanol). HPLC conditions: Chiralpak IC-3: 4.6×250 mm, 254 nm, UV detector, rt, eluent: \(i\)PrOH/hexane (1/10), flow rate: 1 mL/min, retention time 14.9 min for minor isomer and 31.9 min for major isomer.
2 1H and 13C NMR spectra of new compounds

- 1H-NMR spectrum of *endo-5*

- 13C-NMR spectrum of *endo-5*
• 1H-NMR spectrum of endo-6

![H-NMR spectrum of endo-6]

• 13C-NMR spectrum of endo-6

![C-NMR spectrum of endo-6]
• 1H-NMR spectrum of 7

![H-NMR spectrum of 7](image)

• 13C-NMR spectrum of 7

![C-NMR spectrum of 7](image)
• 1H-NMR spectrum of 8

• 13C-NMR spectrum of 8
• 1H-NMR spectrum of \textbf{9}

![H-NMR spectrum of \textbf{9}]

• 13C-NMR spectrum of \textbf{9}

![C-NMR spectrum of \textbf{9}]

14
• 1H-NMR spectrum of 10

![H-NMR spectrum](image)

• 13C-NMR spectrum of 10

![C-NMR spectrum](image)
• 1H-NMR spectrum of 11

• 13C-NMR spectrum of 11
• 1H-NMR spectrum of 12

![H-NMR spectrum of 12](image)

• 13C-NMR spectrum of 12

![C-NMR spectrum of 12](image)
• 1H-NMR spectrum of 13

• 13C-NMR spectrum of 13
• 1H-NMR spectrum of 14

• 13C-NMR spectrum of 14
• 1H-NMR spectrum of 15

![H-NMR spectrum of 15](image)

• 13C-NMR spectrum of 15

![C-NMR spectrum of 15](image)
• 1H-NMR spectrum of exo-5

![H-NMR spectrum of exo-5](image)

• 13C-NMR spectrum of exo-5

![13C-NMR spectrum of exo-5](image)
• 1H-NMR spectrum of 16

![H-NMR spectrum of 16](image)

• 13C-NMR spectrum of 16

![C-NMR spectrum of 16](image)
• 1H-NMR spectrum of 17

• 13C-NMR spectrum of 17
• 1H-NMR spectrum of 18

• 13C-NMR spectrum of 18
• 1H-NMR spectrum of 19

• 13C-NMR spectrum of 19
• 'H-NMR spectrum of 19'

• 13C-NMR spectrum of 19'
3 Copies of HPLC Chromatograms

- Copies of HPLC Chromatograms of racemic and chiral $endo$-3.

![HPLC Chromatogram Diagram]

<table>
<thead>
<tr>
<th>No.</th>
<th>Rt</th>
<th>Peak Name</th>
<th>Area</th>
<th>Area(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.853</td>
<td>ent_1</td>
<td>338090.4</td>
<td>50.18</td>
</tr>
<tr>
<td>2</td>
<td>7.52</td>
<td>ent_2</td>
<td>335721.6</td>
<td>49.82</td>
</tr>
</tbody>
</table>

![HPLC Chromatogram Diagram]

<table>
<thead>
<tr>
<th>No.</th>
<th>Rt</th>
<th>Peak Name</th>
<th>Area</th>
<th>Area(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.973</td>
<td>ent_1</td>
<td>753924</td>
<td>99.01</td>
</tr>
<tr>
<td>2</td>
<td>7.693</td>
<td>ent_2</td>
<td>7556</td>
<td>0.99</td>
</tr>
</tbody>
</table>

| | | | 761480 | 100 |
- Copies of HPLC Chromatograms of racemic and chiral 7

No. Rt Peak Name Area Area(%)
1 22.093 ent₁ 174267.51 53.34
2 22.787 ent₂ 152449.29 46.66

No. Rt Peak Name Area Area(%)
1 22.853 ent₂ 3465476 100

No. Rt Peak Name Area Area(%)
1 22.853 ent₂ 3465476 100
• Copies of HPLC Chromatograms of racemic and chiral 14.

![HPLC Chromatogram of racemic and chiral 14](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>Rt</th>
<th>Peak Name</th>
<th>Area</th>
<th>Area(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.853</td>
<td>ent₁</td>
<td>783703.2</td>
<td>52.58</td>
</tr>
<tr>
<td>2</td>
<td>31.853</td>
<td>ent₂</td>
<td>706653.2</td>
<td>47.42</td>
</tr>
</tbody>
</table>

No. Rt Peak Name Area Area(%)
1 31.08 ent₂ 534082.4 100
 534082.4 100