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A training dataset of 40 molecules from both BMS internal programs and literature 

compounds (natural products and man-made systems) were carefully selected for 

diversity in structural class, topology, substitution pattern, presence/absence of 

stereochemistry and functional groupings.  Distributions of various molecular properties 

from the selected group are illustrated as follows:



S3

PageS3

 

                                            

Figure S1 Distributions of various molecular properties from MW, double bond 
equivalent (DBE), heteroatoms, heterocycles, aromatic rings, stereocenters, and size of 
largest ring in the training dataset.
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Collated training set structures were provided to a group of highly trained synthetic 

organic chemists within BMS, with an average 10 to 20 years experience in synthetic 

organic chemistry from both academic and industrial settings. In our initial assessment, 

no synthetic information was given to the chemists – they could look on their own, but 

the information was not supplied.  To a subset of our raters we gave all the relevant 

synthetic information.  The group was asked to force rank the molecules from 1 to 40 

with 1 being the most complex.  The correlation chart summarized the pooled data with 

comparisons between raters; on the right of the diagonal are the pair-wise correlations, 

with red stars signifying significance levels. The more red stars the higher the correlation.  

As the correlations get bigger, the font size of the coefficient increases. On the left side of 

the diagonal is the scatter-plot matrix between two chemists, with loess fitting line in red 

to illustrate the underlying relationship.   In this chart, lots of correlations were observed, 

indicating an overall agreement among the raters.  

Figure S2 Force ranking pair-wise correlation chart of chemists.
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To quantify structural information of molecular networks, we leveraged a quantitative 

network analysis tool, which allows us to access a large number of topological indices.1  

Since the topological indices do not contain heteroatoms and stereo centers those factors 

were taken into account separately.  For stereogenic centers, in order to differentiate the 

contributions from either de novo synthesis, or naturally occurring sources, we counted 

the number of stereocenters made during the synthesis (chiral_made) separately from 

those purchased.  For aryl heterocycles, we understand that unpredicted stereo-electronic 

effects as well as other latent complexity in terms of the proximal disposition of 

heteroatoms present could be challenging for prediction.  We designated ‘HAA’ as the 

total number of heteroatoms on and in aromatic rings, separate from those on aliphatic 

parts of the molecule.  From fragment-based approaches, we also investigated the use of 

heterocycle fragment prevalence to gauge synthetic complexity assuming the fragment 

frequency is related to synthetic accessibility. In terms of other intrinsic complexity 

factors, we used ‘HANR’ as heteroatoms on nonaromatic moieties and ‘DSC’ as well as 

‘DSH’ to define number of unsaturations in aliphatic and aromatic moieties, respectively.  

For extrinsic (variable) complexity, we chose to follow step counts, ideality from Baran’s 

pioneering work, and yield.  Given those postulated factors, we applied a regression 

subset selection approach (LEAPS) 2 to probe the combinations of main factors as well as 

two-way interactions of the factors.  Selected factors were then evaluated in a following 

Bayesian ordinal probit model for the ordinal scale between 1 to 10.  Topological factors 

such as Randic, Zagreb, and Estrada indices share similar trends, we chose Randic to 

represent the molecular structural information.  Factors such as unsaturation also played a 

role in contributing to the chemist ranking, however, it was not useful in the model. Both 

HNAR and aryl heterocycle prevalence did not give significant contributions in the 

Bayesian model.  Considering variability of yield reported in the literature and inherent 

inaccuracy of yield information, we chose to not include yield in the final analysis. To 

differentiate convergent and linear synthesis, we count longest linear steps and add 50% 

of all the remaining branching steps, this was a valuable differentiation in the model.  

Eventually, we found that five major factors associated with the complexity ranking 

score: i) a molecular topological index (Randic); ii) number of stereogenic centers 
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established via de novo synthesis;  iii) heteroatoms on and in aromatic rings; iv) step 

counts associated with the synthesis; v) percent ideality of the current route. 

Figure S3 Example of the regression subset approach showing linear regression fitting 

with adjusted R squared. 
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Given the eccentric nature of human assessments, probabilistic modelling has been highly 

recommended for human rating systems.   In order to link the ordinal 1 to10 ranking 

values from the chemists to the postulated underlying factors, an ordinal probit regression 

was established where the linear regression output was mapped to the ordinal value 

depending on which threshold, falls between via a cumulative normal density function, 

.  The space between threshold  is not required to be evenly divided.  Bayesian 

inference of this regression model essentially reallocates the credibility across the space 

of model parameters to be consistent with observed chemists ranking data.  This model 

generates the probability of a molecule being in each one of the 10 groups of complexity.

Figure S4 Underlying mapping in ordinal probit regression model.

Bayesian ordinal probit regression analysis were carried out using either WinBUGS or 

openBUGS3  and analyzed with R 2.15.2 statistical programming language4 or 

MCMCpack R package5.  Both approaches provide equivalent results.  Typically, three 

chains, 2000 burn-in steps, and 5000 steps for each chain were used in this model without 



S8

issues in convergence.  The following Monte Carlo (MC) diagnostics were generated 

from posterior distribution using openBUGS.6   The MC convergence was confirmed by 

checking well-mixed chains and analysis of the variance within- and between-chains 

using Brooks-Gelman-Rubin (BGR) diagnostic.

MCMC Diagnostics:

Figure S5 Plots of well-mixed MC chains and BGR plots for each factor coefficient and 

threshold. 
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Figure S6 Pair-wise scatter plots of each factor coefficient and threshold.

The credible values of the regression coefficients and thresholds are shown in the 

following histograms.  Each histogram is marked with its 95% highest density interval 

(HDI), which summarizes where the bulk of the most credible values fall.   It should be 

noted that for threshold distributions, they are highly correlated from scatter plot and 

the overlap between parameter distributions of iand i+1 does not violate the ordering of 

the thresholds.  The actual differences i-i+1 showed no violation of the ordering in 

threshold.7 
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Figure S7 Histograms of each factor coefficient slope and threshold.
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Correlation coefficient between weighted prediction index and weighted chemist ranking 

score is 0.84, which is reasonable compared to other models in the literature,7  signifying 

the validity of the predictive model.  We have conducted assessment over a validation set 

of many (>60) BMS internal molecules and found that this approach passes the 

‘common-sense’ check, with molecules falling into the correct locations on the indexed 

scale. Due to the highly complex and eccentric nature of the human rating, we found this 

probability model captured the majority of the consensus among the raters.  

Expanding the training set of molecules to include much less complex systems and 

increase the pool of experienced chemists will help adjust some of the deficiencies in the 

model – this is on-going work.  Furthermore, other factors such as chemical reactivity, 

thermal stability, cost, and physical characteristics associated with specific intermediates 

and reagents could be included if process safety, economy, and ease of purification are 

taken into account.

Figure S8.  Weighted complexity prediction versus weighted chemist ranking score



S12

Table S8. Input parameters for selected molecules and weighted predicted complexity 

score
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