Electronic Supplementary Information

Ag-mediated cascade decarboxylative coupling and annulation: A convenient route to 2-Phosphinobenzof[b]phosphole Oxides

Gaobo Hu, Yun Zhang, Jue Su, Zezhou Li, Yuxing Gao,* Yufen Zhao

Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
guoxingchem@xmu.edu.cn

Table of Contents

Crystallographic Detail of 3m...2
NMR Spectrum of 3a-3v, 5 and 6..3-38
Crystallographic detail of 3m:
1-(4-(2-(diphenylphosphoryl)-1-oxido-1-phenyl-1H-phosphindol-3-yl)phenyl)ethanone

Single crystal X-ray structure of compound 3m, showing 50% probability displacement ellipsoids (arbitrary spheres for H atoms). The compound 3m crystallizes with two molecules in the asymmetric unit. Compound 3m crystallizes in the triclinic P -1 space group with two molecules per unit cell. There is one independent molecule in the asymmetric unit of 3m.

Detector with graphite-monochromated MoKa radiation (λ = 0.71073 Å) at 173 K. All of the Data were corrected for absorption effects using the multi-scan technique. The structures were solved by direct methods, expanded by difference Fourier syntheses and refined by full matrix least-squares on F2 using Bruker SHELXTL (Version 6.10) program package. Non-H atoms were refined anisotropically unless otherwise stated. Hydrogen atoms were introduced at their geometric positions and refined as riding atoms unless otherwise stated. SQUEEZE removed two disordered methanol molecules per formula unit. Some crystal data for 3m: C_{34}H_{26}O_{3}P_{2}, M = 544.49, triclinic, space group P -1, pale yellow plate, a = 10.554(2) Å, b = 12.782(3) Å, c = 12.959(3) Å, α = 75.259(4)°, β = 67.900(4)°, γ = 76.462(4)°, V = 1565.5(6) Å³, Z = 2, Dc = 1.155 g/cm³, F(000) = 568, μ(Mo-Kα) = 0.142 mm⁻¹, T = 173(2) K. Final R [4812 with I > 2σ(I)] = 0.0519, wR2 (all data) = 0.1387. Further details on the crystal structure investigation have been deposited at the Cambridge Crystallographic Data Centre as the deposition number CCDC 1046595.
NMR Spectrum of 3a-3v, 5 and 6:

1H NMR of 3a

13C NMR of 3a
31P NMR of 3a

1H NMR of 3b
13C NMR of 3b

31P NMR of 3b
1H NMR of 3c

13C NMR of 3c
31P NMR of 3c

![31P NMR spectrum of 3c](image)

1H NMR of 3d

![1H NMR spectrum of 3d](image)
13C NMR of 3d

31P NMR of 3d
1H NMR of 3e

13C NMR of 3e
31P NMR of 3e

1H NMR of 3f
13C NMR of 3f

31P NMR of 3f
1H NMR of 3g

13C NMR of 3g
31P NMR of 3g

1H NMR of 3h
13C NMR of 3h

31P NMR of 3h
1H NMR of 3i

13C NMR of 3i
31P NMR of 3i

1H NMR of 3j
13C NMR of 3j

31P NMR of 3j
1H NMR of 3k

13C NMR of 3k
31P NMR of 3k

1H NMR of 3l
13C NMR of 3l

31P NMR of 3l
1H NMR of 3m

13C NMR of 3m
31P NMR of 3m

1H NMR of 3n
13C NMR of 3n

31P NMR of 3n
1H NMR of 3o

13C NMR of 3o
31P NMR of 3o

1H NMR of 3p
13C NMR of 3p

31P NMR of 3p
1H NMR of 3q

13C NMR of 3q
31P NMR of $3q$

1H NMR of $3r$
13C NMR of 3r

31P NMR of 3r
1H NMR of 3s

13C NMR of 3s
31 P NMR of 3s

$\text{Ph}_2\text{P(Ph)_2O}$

1 H NMR of 3t
1H NMR of 3u

13C NMR of 3u
31P NMR of 3u

1H NMR of 3v
\[13^C\text{ NMR of 3v}\]

\[31^P\text{ NMR of 3v}\]
1H NMR of 5

13C NMR of 5
31P NMR of 5

![Phosphorus NMR Spectrogram of 5]

1H NMR of 6

![Hydrogen NMR Spectrogram of 6]
13C NMR of 6

31P NMR of 6