Natural Nitric Oxide (NO) inhibitors from the rhizomes of *Curcuma phaeocaulis*

Supplementary Information

Jiang-Hao Ma,‡ab Feng Zhao,‡c Ying Wang,b Yue Liu,b Su-Yu Gao,b Li-Qin Ding,a Li-Xia Chen,*b
and Feng Qiu*a

*aSchool of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People’s Republic of China.

*bDepartment of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China

*cSchool of Pharmacy, Yantai University, Yantai 264005, People’s Republic of China

*Corresponding author:

Feng Qiu, PHD

School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, People’s Republic of China. Tel: +86-22-59596223. E-mail: fengqiu20070118@163.com

Lixia Chen, PHD

Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University. Tel: +86-24-23986515. E-mail: syzyclx@163.com
Contents of Supporting Information

<table>
<thead>
<tr>
<th>No.</th>
<th>Contents</th>
<th>Pages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1-S8</td>
<td>13C NMR, 1H NMR, 1H-1H COSY, HSQC, HMBC, NOESY, Rh$_2$(OCOCF$_3$)$_4$-induced CD spectra, HRESIMS spectra of phasalvione (1)</td>
<td>3-10</td>
</tr>
<tr>
<td>Figure S9-S16</td>
<td>13C NMR, 1H NMR, 1H-1H COSY, HSQC, HMBC, NOESY, Rh$_2$(OCOCF$_3$)$_4$-induced CD spectra, HRESIMS spectra of phaeocaudione (2)</td>
<td>11-18</td>
</tr>
<tr>
<td>Figure S17-S22</td>
<td>13C NMR, 1H NMR, HSQC, HMBC, NOESY, HRESIMS spectra of phaeocauone (3)</td>
<td>19-24</td>
</tr>
<tr>
<td>Figure S23-S27</td>
<td>13C NMR, 1H NMR, HSQC, HMBC, HRESIMS spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)</td>
<td>25-29</td>
</tr>
<tr>
<td>Figure S28-S33</td>
<td>13C NMR, 1H NMR, HSQC, HMBC, NOESY, HRESIMS spectra of 8β(H)-elema-1,3,7(11)-trien-8,12-lactam (5)</td>
<td>30-35</td>
</tr>
<tr>
<td>Figure S34-S39</td>
<td>13C NMR, 1H NMR, HSQC, HMBC, NOESY, HRESIMS spectra of 8β-methoxy-isogermafurenolide (6)</td>
<td>36-41</td>
</tr>
<tr>
<td>Figure S40-S45</td>
<td>13C NMR, 1H NMR, HSQC, HMBC, NOESY, CD, HRESIMS spectra of phaeusmane I (7)</td>
<td>42-47</td>
</tr>
<tr>
<td>Figure S46-S51</td>
<td>13C NMR, 1H NMR, HSQC, HMBC, NOESY, HRESIMS spectra of phaeoheptanoxide (8)</td>
<td>48-53</td>
</tr>
<tr>
<td>Figure S52-S53</td>
<td>Chiral HPLC analytical chromatograms for compounds 5–7</td>
<td>54</td>
</tr>
</tbody>
</table>
Figure S1. 13C NMR spectra of phasalvione (1)
Figure S2. 1H NMR spectra of phasalvione (1)
Figure S3. 1H-1H COSY spectra of phasalvione (1)
Figure S4. HSQC spectra of phasalvione (1)
Figure S5. HMBC spectra of phasalvione (1)
Figure S6. NOESY spectra of phasalvione (1)
Figure S7. Rh$_2$(OCOCF$_3$)$_4$-induced CD spectra of phasalvione (I)
Figure S8. HRESIMS spectra of phasalvione (1)
Figure S9. 13C NMR spectra of phaeocaudione (2)
Figure S10. 1H NMR spectra of phaeocaudione (2)
Figure S11. 1H-1H COSY spectra of phaeocaudione (2)
Figure S12. HSQC spectra of phaeocaudione (2)
Figure S13. HMBC spectra of phaeocaudione (2)
Figure S14. NOESY spectra of phaeocaudione (2)
Figure S15. Rh$_2$(OCOCF$_3$)$_4$-induced CD spectra of phaeocaudione (2)
Figure S16. HRESIMS spectra of phaeocaudione (2)
Figure S17. 13C NMR spectra of phaeocauone (3)
Figure S18. 1H NMR spectra of phaeocauone (3)
Figure S19. HSQC spectra of phaeocauone (3)
Figure S20. HMBC spectra of phaeocauone (3)
Figure S21. NOESY spectra of phaeocauone (3)
Figure S22. HRESIMS spectra of phaeocauone (3)
Figure S23. 13C NMR spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)
Figure S24. 1H NMR spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)
Figure S25. HSQC spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)
Figure S26. HMBC spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)
Figure S27. HRESIMS spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)
Figure S28. 13C NMR spectra of 8β(H)-elema-1,3,7(11)-trien-8,12-lactam (5)
Figure S29. 1H NMR spectra of 8β(H)-elema-1,3,7(11)-trien-8,12-lactam (5)
Figure S30. HSQC spectra of 8β(H)-elema-1,3,7(11)-trien-8,12-lactam (5)
Figure S31. HMBC spectra of 8α(H)-elema-1,3,7(11)-trien-8,12-lactam (5)
Figure S32. NOESY spectra of 8β(H)-elema-1,3,7(11)-trien-8,12-lactam (5)
Figure S33. HRESIMS spectra of 8β(H)-elema-1,3,7(11)-trien-8,12-lactam (5)
Figure S34. 13C NMR spectra of 8β-methoxy-isogermafurenolide (6)
Figure S35. 1H NMR spectra of 8β-methoxy-isogermacurenolide (6)
Figure S36. HSQC spectra of 8β-methoxy-isogermaurenoide (6)
Figure S37. HMBC spectra of 8β-methoxy-isogermafurenoide (6)
Figure S38. NOESY spectra of 8β-methoxy-isogermafurenolide (6)
Figure S39. HRESIMS spectra of 8β-methoxy-isogermafuricolide (6)

Table:

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>PPM</th>
<th>DBE</th>
<th>Formula</th>
<th>fit</th>
<th>fit conf %</th>
<th>C</th>
<th>H</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>263.1647</td>
<td>263.1647</td>
<td>0.0</td>
<td>0.0</td>
<td>C16 H33 O3</td>
<td>40.5</td>
<td>n/a</td>
<td>16</td>
<td>23</td>
<td>3</td>
</tr>
</tbody>
</table>

Diagram:

- M0 = 31 (0.136)
- 1: TOF MS ES*

- Mass values: 263.1647, 263.1823
Figure S40. 13C NMR spectra of phaeusmane I (7)
Figure S41. 1H NMR spectra of phaeusmane I (7)
Figure S42. HSQC spectra of phaeusmane I (7)
Figure S43. HMBC spectra of phaeusmane I (7)
Figure S44. NOESY spectra of phaeusmane I (7)
Figure S45. HRESIMS spectra of phaeusmane I (7)
Figure S46. 13C NMR spectra of phaeoheptanoxide (8)
Figure S47. 1H NMR spectra of phaeoheptanoxide (8)
Figure S48. HSQC spectra of phaeoheptanoxide (8)
Figure S49. HMBC spectra of phaeoheptanoxide (8)
Figure S50. NOESY spectra of phaeoheptanoxide (8)
Figure S51. HRESIMS spectra of phaeoheptanoxide (8)
Figure S52. Chiral HPLC analytical chromatograms for compounds 5 and 6

(Daicel, Chiralpak AD-RH, 5 µm, 150 × 4.6 mm; MeCN/H2O 45:55; flow rate 1.0 ml/min; 220 nm)

Figure S53. Chiral HPLC analytical chromatogram for compound 7

(Phenomenex, Lux Cellulose-2, 3 µm, 250 × 4.6 mm; MeCN/H2O 90:10; flow rate 0.7 ml/min; 220 nm)