Supporting Information

Cu(OAc)$_2$-Promoted Reaction [60]Fullerene with Primaryamines and Diamines

Xin-Wei Lu, Meng-Lei Xing,† Chun-Bao Miao,† Jia-Xing Li,‡ Xiao-Qiang Sun, *,† and Hai-Tao Yang, *†

† School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
‡ Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, China

Email: yht898@yahoo.com

General Synthetic Procedure and Identification of the Products S1-7

UV–vis Spectra of 2e and 3a .. S8

1H NMR, 13C NMR Spectra of Products S9-27

1H NMR and 13C NMR spectra of 2a ... S9

1H NMR and 13C NMR spectra of 3a ... S10

1H NMR spectra of 2b and 3b .. S11

1H NMR spectra of 2c and 3c .. S12

1H NMR and 13C NMR spectra of 2d ... S13

1H NMR and 13C NMR spectra of 3d ... S14

1H NMR and 13C NMR spectra of 2e ... S15

1H NMR and 13C NMR spectra of 2f ... S16

1H NMR and 13C NMR spectra of 2g ... S17

1H NMR and 13C NMR spectra of 3g ... S18

1H NMR and 13C NMR spectra of 2h ... S19

1H NMR and 13C NMR spectra of 2i ... S20

1H NMR and 13C NMR spectra of 2j ... S21

1H NMR and 13C NMR spectra of 2k ... S22

1H NMR and 13C NMR spectra of 2l ... S23

1H NMR spectra of 2m and 2n .. S24

1H NMR and 13C NMR spectra of 5a ... S25

1H NMR spectra of 5b and 5c .. S26

1H NMR and 13C NMR spectra of 5d ... S27

S1
General Procedure for the Cu(OAc)$_2$-Promoted Reaction of C$_{60}$ with Alkyl Amines 1a-f

C$_{60}$ (72.0 mg, 0.1 mmol) and 20 mL of dry chlorobenzene was added to a big tube (Φ 2.5 cm × 18 cm). After ultrasonic dissolution, DMAP (24.4 mg, 0.2 mmol), Cu(OAc)$_2$ (36.2 mg, 0.2 mmol), and alkyl amines (1a-f, 0.2 mmol) was added sequentially. The mixture was vigorously stirred at 80 °C for 3-6 h. The solvent was evaporated in vacuo, and the residue was purified on a silica gel column using CS$_2$/toluene as the eluent to give unreacted C$_{60}$ and the products 2a-f and 3a-d.

2a (brown solid, 7.8 mg, 9%, mp > 300 °C): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 7.61 (d, $J = 8.5$ Hz, 2H), 6.95 (d, $J = 8.6$ Hz, 2H), 4.71 (s, 2H), 3.83 (s, 3H); 13C NMR (125 MHz, CDCl$_3$-CS$_2$) δ 159.42, 145.10, 145.06, 144.49, 144.43, 143.74, 143.03, 142.85, 142.26, 142.11, 140.74, 130.32, 129.02, 114.28, 85.27 (sp3-C of C$_{60}$), 55.03, 53.99.

3a (brown solid, 15.9 mg, 16%, mp > 300 °C): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 7.46 (d, $J = 8.5$ Hz, 4H), 6.82 (d, $J = 8.6$ Hz, 4H), 4.54 (d, $J = 13.4$ Hz, 2H), 4.19 (d, $J = 13.4$ Hz, 2H), 3.81 (s, 6H); 13C NMR (100 MHz, CDCl$_3$-CS$_2$) δ 159.06, 153.38, 149.64, 148.02, 147.02, 146.10, 146.04, 145.73, 145.66, 145.64, 145.21, 145.09, 144.66, 144.07, 144.00, 143.80, 143.50, 143.42, 143.30, 142.87, 142.46, 142.00, 141.67, 141.51, 141.47, 141.24, 140.64, 140.07, 139.70, 129.94, 129.11, 114.15, 77.26 (sp3-C of C$_{60}$), 72.82 (sp3-C of C$_{60}$), 55.06, 52.82; UV-vis (CHCl$_3$) λ_{max}/nm 258, 327, 426, 471, 686; HRMS (MALDI-TOFMS) m/z: [M+Na]$^+$ Calcd for C$_{76}$H$_{18}$N$_2$O$_2$Na 1013.1266, found 1013.1260.

2b (brown solid, 11.8 mg, 14%, mp > 300 °C): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 8.00 (d, $J = 7.6$ Hz, 2H), 7.73 (t, $J = 7.4$ Hz, 2H), 7.66 (t, $J = 7.6$ Hz, 1H), 5.07 (s, 2H).

3b (brown solid, 15.2 mg, 16%, mp > 300 °C): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 7.56-7.62 (m, 4H), 7.28-7.34 (m, 6H), 4.58 (d, $J = 13.8$ Hz, 2H), 4.31 (d, $J = 13.8$ Hz, 2H).

2c (brown solid, 16.9 mg, 21%, mp > 300 °C): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 3.66 (t, $J = 7.1$ Hz, 2H), 2.13 (quint, $J = 7.3$ Hz, 2H), 1.79 (sextet, $J = 7.5$ Hz, 2H), 1.15 (t, $J = 7.4$ Hz, 3H).
3c (brown solid, 11.3 mg, 13%, mp > 300 °C): \(^1H\) NMR (500 MHz, CDCl\textsubscript{3}-CS\textsubscript{2}) \(\delta\) 3.41 (ddd, \(J = 11.8, 8.0, 6.3\) Hz, 2H), 3.20 (ddd, \(J = 11.8, 7.9, 6.3\) Hz, 2H), 1.93-2.07 (m, 4H), 1.64-1.75 (m, 4H), 1.08 (t, \(J = 7.4\) Hz, 6H).

2d (brown solid, 12.4 mg, 14%, mp > 300 °C): \(^1H\) NMR (500 MHz, CDCl\textsubscript{3}-CS\textsubscript{2}) \(\delta\) 7.56 (d, \(J = 8.2\) Hz, 1H), 7.34 (d, \(J = 2.1\) Hz, 1H), 7.24 (dd, \(J = 8.2, 2.1\) Hz, 2H), 3.94 (t, \(J = 6.6\) Hz, 2H), 3.57 (t, \(J = 6.6\) Hz, 2H). \(^{13}C\) NMR (100 MHz, CDCl\textsubscript{3}-CS\textsubscript{2}) \(\delta\) 145.22, 145.18, 144.68, 144.61, 144.58, 143.83, 143.13, 143.11, 142.90, 142.25, 142.16, 140.71, 135.35, 135.09, 133.71, 132.81, 129.62, 127.64, 84.43 (sp3-C of C\textsubscript{60}), 49.77, 33.69; UV-vis (CHCl\textsubscript{3}) \(\lambda_{\text{max/nm}}\) 258, 325, 424, 500, 682; HRMS (MALDI-TOFMS) m/z: [M+H]\(^+\) Calcd for C\textsubscript{68}H\textsubscript{8}Cl\textsubscript{2}N 908.0034, found 908.0022.

3d (brown solid, 23.4 mg, 21%, mp > 300 °C): \(^1H\) NMR (500 MHz, CDCl\textsubscript{3}-CS\textsubscript{2}) \(\delta\) 7.55 (d, \(J = 8.2\) Hz, 2H), 7.26 (d, \(J = 2.1\) Hz, 2H), 7.20 (dd, \(J = 8.2, 2.1\) Hz, 2H), 3.40-3.63 (m, 8H); \(^{13}C\) NMR (125 MHz, CDCl\textsubscript{3}-CS\textsubscript{2}) \(\delta\) 153.19, 148.93, 147.53, 147.02, 146.05, 145.69, 145.50, 145.10, 144.96, 144.61, 143.98, 143.90, 143.71, 143.35, 143.19, 142.73, 142.32, 142.27, 141.91, 141.52, 141.33, 141.25, 141.22, 140.60, 140.29, 139.62, 138.91, 135.26, 134.96, 133.61, 132.46, 129.45, 127.43, 75.63 (sp3-C of C\textsubscript{60}), 71.95 (sp3-C of C\textsubscript{60}), 48.45, 33.45; UV-vis (CHCl\textsubscript{3}) \(\lambda_{\text{max/nm}}\) 258, 327, 426, 470, 686; HRMS (MALDI-TOFMS) m/z: [M+H]\(^+\) Calcd for C\textsubscript{69}H\textsubscript{11}N 1094.9989, found 1094.9983.

2e (brown solid, 14.2 mg, 17%, mp > 300 °C): \(^1H\) NMR (400 MHz, CDCl\textsubscript{3}-CS\textsubscript{2}) \(\delta\) 4.17 (q, \(J = 7.1\) Hz, 2H), 3.70 (t, \(J = 6.6\) Hz, 2H), 2.81 (t, \(J = 7.2\) Hz, 2H), 2.42 (quint, \(J = 6.9\) Hz, 2H), 1.31 (t, \(J = 7.1\) Hz, 3H). \(^{13}C\) NMR (100 MHz, CDCl\textsubscript{3}-CS\textsubscript{2}) \(\delta\) 172.52, 145.13, 145.09, 144.62, 144.51, 144.48, 143.76, 143.06, 142.85, 142.24, 142.12, 140.78, 85.03 (sp3-C of C\textsubscript{60}), 60.54, 50.12, 31.94, 24.92, 14.48; UV-vis (CHCl\textsubscript{3}) \(\lambda_{\text{max/nm}}\) 258, 325, 424, 500, 682; HRMS (MALDI-TOFMS) m/z: [M]\(^+\) Calcd for C\textsubscript{69}H\textsubscript{11}NO\textsubscript{2} 849.0790, found 849.0773.
2f (brown solid, 11.1 mg, 14%, mp > 300 ºC): ¹H NMR (500 MHz, CDCl₃-CS₂) δ 3.84 (t, \(J = 6.1 \) Hz, 2H), 3.77 (t, \(J = 6.8 \) Hz, 2H), 3.45 (s, 3H), 2.40 (quint, \(J = 6.4 \) Hz, 2H); ¹³C NMR (125 MHz, CDCl₃-CS₂) δ 145.22, 145.18, 144.69, 144.61, 144.57, 143.86, 143.15, 142.95, 142.38, 142.22, 140.86, 85.36 (sp³-C of C₆₀), 70.44, 58.88, 48.34, 30.07; UV-vis (CHCl₃) \(\lambda_{\text{max}}/\text{nm} \) 258, 325, 424, 499, 682; HRMS (MALDI-TOFMS) m/z: [M]⁺ Calcd for C₆₄H₆NO 807.0684, found 807.0663.

General Procedure for the Cu(OAc)₂-Promoted Reaction of C₆₀ with Aryl Amines 1g-n

C₆₀ (72.0 mg, 0.1 mmol) and 20 mL of dry chlorobenzene was added to a big tube (Φ 2.5 cm × 18 cm). After ultrasonic dissolution, DMAP (24.4 mg, 0.2 mmol), Cu(OAc)₂ (36.2 mg, 0.2 mmol), and aryl amines (1g-n, 0.2 mmol) was added sequentially. Then the mixture was vigorously stirred at 80 ºC for 8-12 h. The solvent was evaporated in vacuo, and the residue was purified on a silica gel column using CS₂/toluene as the eluent to give unreacted C₆₀ and the products 2g-n.

2g (brown solid, 10.1 mg, 12%, mp > 300 ºC): ¹H NMR (500 MHz, CDCl₃-CS₂) ¹H NMR (500 MHz, CDCl₃-CS₂) δ 7.54 (d, \(J = 8.3 \) Hz, 2H), 7.31 (d, \(J = 8.4 \) Hz, 2H), 2.96 (heptet, \(J = 6.9 \) Hz, 1H), 1.33 (d, \(J = 7.0 \) Hz, 6H); ¹³C NMR (125 MHz, CDCl₃-CS₂) δ 145.24, 145.16, 145.01, 144.81, 144.76, 144.74, 144.59, 144.53, 144.11, 143.89, 143.34, 143.12, 142.86, 142.32, 142.21, 140.94, 140.76, 127.14, 121.34, 83.75 (sp³-C of C₆₀), 33.85, 24.20; UV-vis (CHCl₃) \(\lambda_{\text{max}}/\text{nm} \) 258, 326, 405, 423, 454, 507, 683; HRMS (MALDI-TOFMS) m/z: [M]⁺ Calcd for C₆₉H₁₁N 853.0891, found 853.0895.

2h (brown solid, 14.6 mg, 18%, mp > 300 ºC): ¹H NMR (500 MHz, CDCl₃-CS₂) δ 7.43 (s, 1H), 7.42 (d, \(J = 7.6 \) Hz, 1H), 7.34 (t, \(J = 7.6 \) Hz, 1H), 7.01 (d, \(J = 7.4 \) Hz, 1H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃-CS₂) δ 145.52, 145.23, 145.14, 144.91, 144.80, 144.73, 144.72, 144.57, 144.09, 143.86, 143.09, 142.85, 142.29, 142.19, 140.94, 140.71, 139.05, 129.03, 125.17, 121.95, 118.64, 83.59 (sp³-C of C₆₀), 21.80; UV-vis (CHCl₃) \(\lambda_{\text{max}}/\text{nm} \) 258, 325, 405, 424, 455, 510, 683; HRMS (MALDI-TOFMS) m/z: [M]⁺ Calcd for C₆₇H₇N 825.0578, found 825.0592.
2i (brown solid, 11.9 mg, 14%, mp > 300 °C): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 7.40 (d, $J = 2.1$ Hz, 1H), 7.35 (dd, $J = 8.0$, 2.3 Hz, 1H), 7.20 (d, $J = 8.0$ Hz, 1H), 2.37 (s, 3H), 2.32 (s, 3H); 13C NMR (125 MHz, CDCl$_3$-CS$_2$) δ 145.28, 145.20, 145.15, 144.83, 144.82, 144.78, 144.63, 144.16, 143.93, 143.47, 143.16, 143.14, 142.91, 142.39, 142.25, 140.97, 140.76, 137.52, 132.42, 130.25, 122.63, 118.98, 83.80 (sp3-C of C$_{60}$), 20.28, 19.41; UV-vis (CHCl$_3$) λ_{max}/nm 258, 326, 405, 423, 455, 508, 684; HRMS (MALDI-TOFMS) m/z: [M]$^+$ Calcd for C$_{68}$H$_9$N 839.0735, found 839.0753.

2j (brown solid, 8.5 mg, 10%, mp > 300 °C): 1H NMR (400 MHz, CDCl$_3$-CS$_2$) δ 7.55 (d, $J = 8.9$ Hz, 2H), 6.99 (d, $J = 8.9$ Hz, 2H), 3.85 (s, 3H); 13C NMR (100 MHz, CDCl$_3$-CS$_2$) δ 156.32, 145.27, 145.18, 145.00, 144.84, 144.76, 144.75, 144.60, 144.10, 143.91, 143.12, 143.10, 142.89, 142.33, 142.21, 140.94, 140.74, 138.86, 122.52, 114.49, 83.82 (sp3-C of C$_{60}$), 55.43; UV-vis (CHCl$_3$) λ_{max}/nm 258, 326, 405, 423, 457, 510, 684; HRMS (MALDI-TOFMS) m/z: [M]$^+$ Calcd for C$_{67}$H$_7$NO 841.0528, found 841.0523.

2k (brown solid, 12.6 mg, 14%, mp > 300 °C): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 7.70 (d, $J = 8.8$ Hz, 2H), 7.68 (d, $J = 8.8$ Hz, 2H), 7.60 (d, $J = 7.4$ Hz, 2H), 7.42 (t, $J = 7.7$ Hz, 2H), 7.32 (t, $J = 7.4$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$-CS$_2$) δ 145.25, 145.16, 144.85, 144.81, 144.75, 144.69, 144.58, 144.08, 143.87, 143.12, 143.10, 142.85, 142.26, 142.19, 140.98, 140.76, 140.37, 137.24, 128.90, 127.86, 127.26, 126.97, 121.88, 83.55 (sp3-C of C$_{60}$); UV-vis (CHCl$_3$) λ_{max}/nm 258, 324, 405, 424, 458, 510, 684; HRMS (MALDI-TOFMS) m/z: [M]$^+$ Calcd for C$_{72}$H$_9$NO 887.0735, found 887.0717.

2l (brown solid, 14.1 mg, 16%, mp > 300 °C): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 7.59 (d, $J = 8.4$ Hz, 2H), 7.39 (d, $J = 8.4$ Hz, 2H), 4.18 (q, $J = 7.1$ Hz, 2H), 3.65 (s, 2H), 3.69 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$-CS$_2$) δ 171.04, 145.25, 145.17, 144.84, 144.77, 144.73, 144.69, 144.59, 144.51, 144.08, 143.88, 143.12, 143.11, 142.86, 142.27, 142.20, 140.97, 140.74, 130.05, 129.97, 121.55,
83.53 (sp3-C of C$_{60}$), 60.92, 40.85, 14.39; UV-vis (CHCl$_3$) λ_{max}/nm 258, 324, 404, 424, 455, 510, 684; HRMS (MALDI-TOFMS) m/z: [M]$^+$ Calcd for C$_{70}$H$_{11}$NO$_2$ 897.0790, found 897.0785.

2m (brown solid, 6.9 mg, 8%, mp > 300 ºC): 1H NMR (300 MHz, CDCl$_3$-CS$_2$) δ 8.38 (d, $J = 8.8$ Hz, 2H), 7.79 (d, $J = 8.9$ Hz, 2H).

2n (brown solid, 6.5 mg, 7%, mp > 300 ºC): 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 8.16 (d, $J = 8.6$ Hz, 2H), 7.69 (d, $J = 8.6$ Hz, 2H), 4.38 (q, $J = 7.1$ Hz, 2H), 1.41 (t, $J = 7.1$ Hz, 3H).

Cu(OAc)$_2$-Promoted Reaction of C$_{60}$ with 4-Isopropylaniline 1g at 120 ºC

C$_{60}$ (72.0 mg, 0.1 mmol) and 20 mL of dry chlorobenzene was added to a big tube (Φ 2.5 cm × 18 cm). After ultrasonic dissolution, DMAP (24.4 mg, 0.2 mmol), Cu(OAc)$_2$ (36.2 mg, 0.2 mmol), and 4-isopropylaniline 1g (0.2 mmol) was added sequentially. Then the mixture was vigorously stirred at 120 ºC for 8 h. The solvent was evaporated in vacuo, and the residue was purified on a silica gel column using CS$_2$/toluene as the eluent to give unreacted C$_{60}$ and the products 2g (8.6 mg, 10%) and 3g (7.1 mg, 7%).

3g: 1H NMR (500 MHz, CDCl$_3$-CS$_2$) 1H NMR (500 MHz, CDCl$_3$-CS$_2$) δ 7.35 (d, $J = 8.4$ Hz, 4H), 7.21 (d, $J = 8.4$ Hz, 4H), 2.91 (heptet, $J = 6.9$ Hz, 2H), 1.28 (d, $J = 6.9$ Hz, 12H); 13C NMR (125 MHz, CDCl$_3$-CS$_2$) δ 152.06, 149.27, 147.64, 147.06, 146.19, 145.98, 145.70, 145.50, 145.42, 145.22, 144.88, 144.62, 144.03, 144.02, 143.94, 143.87, 143.41, 143.38, 143.23, 142.79, 142.62, 142.36, 142.29, 142.26, 142.02, 141.84, 141.67, 141.65, 141.25, 140.09, 140.05, 139.63, 126.86, 121.86, 121.30, 75.96 (sp3-C of C$_{60}$), 70.32 (sp3-C of C$_{60}$), 33.79, 24.15, 24.14; UV-vis (CHCl$_3$) λ_{max}/nm 258, 325, 424, 470, 683; HRMS (MALDI-TOFMS) m/z: [M]$^+$ Calcd for C$_{78}$H$_{22}$N$_2$ 986.1783, found 986.1770.

General Procedure for the Cu(OAc)$_2$-Promoted Reaction of C$_{60}$ with Diamines 4a-e

C$_{60}$ (72.0 mg, 0.1 mmol) and 20 mL of dry chlorobenzene was added to a big tube (Φ 2.5 cm × 18 cm). After ultrasonic dissolution, DMAP (24.4 mg, 0.2 mmol), Cu(OAc)$_2$ (36.2 mg, 0.2 mmol), and
diamines (4a-e, 0.2 mmol) was added sequentially. The mixture was vigorously stirred at 80 °C for 2.5-4 h. The solvent was evaporated in vacuo, and the residue was purified on a silica gel column using CS₂/toluene as the eluent to give unreacted C₆₀ and the products 5a-d.

5a (brown solid, 11.1 mg, 14%, mp > 300 °C): ¹H NMR (500 MHz, CDCl₃) δ 3.92 (s, 4H), 3.41 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 1151.33, 148.22, 146.60, 146.27, 145.88, 145.76, 145.66, 145.38, 144.86, 142.95, 142.78, 142.45, 141.64, 141.53, 138.88, 137.22, 80.64 (sp³-C of C₆₀), 48.62, 44.26.

5b (brown solid, 34.4 mg, 43%, mp > 300 °C): ¹H NMR (500 MHz, CDCl₃) δ 4.48-4.61 (m, 4H), 3.53-3.65 (m, 4H).

5c (brown solid, 44.7 mg, 55%, mp > 300 °C): ¹H NMR (500 MHz, CDCl₃) δ 4.64 (ddd, J = 15.8, 11.6, 5.0 Hz, 2H), 4.45-4.56 (m, 2H), 3.94 (ddd, J = 15.8, 6.1, 2.3 Hz, 2H), 3.79-3.90 (m, 2H), 2.63 (dtt, J = 15.0, 11.5, 6.0 Hz, 1H), 2.63 (dtt, J = 15.0, 5.0, 2.5 Hz, 1H).

5d (brown solid, 8.5 mg, 10%, mp > 300 °C): ¹H NMR (500 MHz, CDCl₃-CS₂) δ 4.39 (t, J = 13.5 Hz, 2H), 3.65 (d, J = 14.7 Hz, 2H), 3.57 (s, 6H), 2.84 (qt, J = 13.0, 4.1 Hz, 1H), 1.93 (dt, J = 13.8, 2.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃-CS₂) δ 154.91, 154.57, 148.39, 146.70, 146.55, 146.24, 146.18, 145.63, 145.62, 145.60, 145.54, 145.46, 145.43, 145.40, 144.94, 143.01, 142.93, 142.77, 142.73, 142.59, 141.66, 141.64, 141.47, 141.19, 139.31, 138.92, 136.71, 136.10, 83.69 (sp³-C of C₆₀), 55.85, 43.08, 27.37; UV-vis (CHCl₃) λ max/nm 257, 312, 698; HRMS (MALDI-TOFMS) m/z: [M+H]⁺ Calcd for C₆₅H₁₃N₂ 821.1079, found 821.1099.
Impurities

H₂O