Electronic Supplementary Information

Understanding the conformational behaviour of Ac-Ala-NHMe in different media. A joint NMR and DFT study.

R. A. Cormanich^{*a*}, M. Bühl^{*b*} and R. Rittner^{*,*a*}

^a Chemistry Institute, State University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil,

^b EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST UK

Table S1: Compound 1 conformer relative energies (ΔE) in kcal mol⁻¹ and corresponding populations (%P) obtained at the B3LYP-D3/aug-cc-pVDZ level for the isolated compounds and by using the IEF-PCM implicit solvent model with dichloromethane, acetone, acetonitrile, DMSO, methanol and water dielectric constants.

	1	a	1	b	1	c	1	d	1	e	1	f	1	g	1	h	1	i	1	j	1k	2	1	1
	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P
Isolated	0.00	90.2	1.61	6.0	1.99	3.1	3.33	0.3	3.63	0.2	3.87	0.1	4.36	0.1	5.22	0.0	6.32	0.0		0.0	6.39	0.0	8.35	0.0
CH ₂ Cl ₂	0.00	60.5	0.77	16.4	1.52	4.6	0.99	11.4	2.71	0.6	2.07	1.8	3.84	0.1	2.99	0.4	3.46	0,2	1.60	4.0	4.72	0.0	5.28	0.0
Acetone	0.00	49.5	0.69	15.5	1.50	3.9	0.48	22.0	2.67	0.5	1.86	2.1	3.40	0.2	2.48	0.8	3.05	0.3	1.34	5.1	4.52	0.0	4.92	0.0
Acetonitrile	0.00	44.5	0.66	14.6	1.49	3.6	0.28	27.5	2.65	0.5	1.79	2.2	3.30	0.2	2.28	0.9	2.91	0.3	1.23	5.6	4.45	0.0	4.79	0.0
DMSO	0.00	42.8	0.65	14.3	1.49	3.4	0.22	29.6	2.65	0.5	1.77	2.2	3.27	0.2	2.21	1.0	2.86	0.3	1.19	5.8	4.43	0.0	4.75	0.0
Methanol	0.00	45.2	0.66	14.7	1.49	3.6	0.31	26.7	2.65	0.5	1.80	2.2	3.32	0.2	2.31	0.9	2.93	0.3	1.24	5.5	4.46	0.0	4.81	0.0
Water	0.00	40.3	0.64	13.7	1.49	3.3	0.13	32.4	2.65	0.5	1.74	2.1	3.23	0.2	2.12	1.1	2.79	0.4	1.13	5.9	4.40	0.0	4.70	0.0

Table S2: Compound 1 conformer relative energies (ΔH) in kcal mol⁻¹ and corresponding populations (%P) obtained at the B3LYP-D3/aug-cc-pVDZ level for the isolated compounds and by using the IEF-PCM implicit solvent model with dichloromethane, acetone, acetonitrile, DMSO, methanol and water dielectric constants.

	1	a	1	b	1	c	1	d	1	e	1	f	1	g	1	h	1	i	1	j	1	k	11	
	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P
Isolated	0.00	88.5	1.41	8.2	2.13	2.4	3.17	0.4	3.57	0.2	3.84	0.1	4.45	0.0	5.05	0.0	6.13	0.0		0.0	6.36	0.0	8.25	0.0
CH ₂ Cl ₂	0.00	57.3	0.63	19.9	1.71	3.2	0.91	12.3	2.63	0.7	2.06	1.8	3.91	0.1	2.84	0.5	3.41	0.2	1.56	4.1	4.75	0.0	5.38	0.0
Acetone	0.00	46.9	0.55	18.4	1.68	2.7	0.44	22.4	2.59	0.6	1.85	2.0	3.45	0.1	2.36	0.9	3.02	0.3	1.26	5.6	4.56	0.0	5.03	0.0
Acetonitrile	0.00	42.2	0.53	17.3	1.67	2.5	0.25	27.7	2.58	0.5	1.78	2.1	3.37	0.1	2.17	1.1	2.88	0.3	1.23	6.0	4.49	0.0	4.90	0.0
DMSO	0.00	40.6	0.52	16.9	1.67	2.4	0.19	29.7	2.58	0.5	1.76	2.1	3.34	0.1	2.11	1.2	2.83	0.3	1.13	6.1	4.46	0.0	4.86	0.0
Methanol	0.00	42.9	0.53	17.5	1.67	2.6	0.27	27.0	2.58	0.5	1.79	2.1	3.38	0.1	2.20	1.0	2.90	0.3	1.17	5.9	4.50	0.0	4.92	0.0
Water	0.00	38.4	0.51	16.3	1.66	2.3	0.10	32.4	2.58	0.5	1.73	2.1	3.30	0.1	2.02	1.3	2.77	0.4	1.08	6.2	4.43	0.0	4.80	0.0

Table S3: Compound 1 conformer relative energies (ΔG) in kcal mol⁻¹ and corresponding populations (%P) obtained at the B3LYP-D3/aug-cc-pVDZ level for the isolated compounds and by using the IEF-PCM implicit solvent model with dichloromethane, acetone, acetonitrile, DMSO, methanol and water dielectric constants.

	1	a	1	b	1	c	1	d	1	e	1	f	1	g	1	h	1	i	1	j	1	k	1	.1
	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P
Isolated	0.00	64.7	0.44	30.7	2.23	1.5	1.86	2.8	3.92	0.1	3.80	0.1	4.30	0.0	4.47	0.0	5.76	0.0		0.0	5.94	0.0	9.06	0.0
CH ₂ Cl ₂	0.48	22.4	0.00	50.7	2.68	0.6	0.64	17.3	3.02	0.3	2.64	0.6	3.04	0.3	2.99	0.3	3.48	0.1	1.14	7.4	5.65	0.0	6.62	0.0
Acetone	0.52	17.0	0.00	41.0	2.64	0.5	0.40	20.8	2.98	0.3	2.39	0.7	3.61	0.1	2.39	0.7	3.17	0.2	0.46	18.7	5.41	0.0	6.20	0.0
Acetonitrile	0.50	17.3	0.00	40.4	2.59	0.5	0.24	26.8	2.95	0.3	2.26	0.9	3.63	0.1	2.23	0.9	3.03	0.2	0.69	12.6	5.30	0.0	6.02	0.0
DMSO	0.49	17.1	0.00	39.0	2.58	0.5	0.18	28.8	2.94	0.3	2.22	0.9	3.61	0.1	2.17	1.0	2.98	0.3	0.70	12.0	5.26	0.0	5.96	0.0
Methanol	0.51	17.3	0.00	40.7	2.60	0.5	0.26	26.1	2.96	0.3	2.28	0.9	3.64	0.1	2.25	0.9	3.05	0.2	0.68	13.0	5.31	0.0	6.04	0.0
Water	0.48	16.4	0.00	36.8	2.55	0.5	0.08	32.0	2.93	0.3	2.16	1.0	3.59	0.1	2.08	1.1	2.91	0.3	0.68	11.6	5.20	0.0	5.88	0.0

Table S4: Compound **2** conformer relative energies (ΔE) in kcal mol⁻¹ and corresponding populations (%P) obtained at the B3LYP-D3/aug-cc-pVDZ level for the isolated compounds and by using the IEF-PCM implicit solvent model with dichloromethane, acetone, acetonitrile, DMSO, methanol and water dielectric constants.

	2	a	2	b	2	c	20	d	2	e	2	f	2	g	2	h	2	i	2	j	21	K	2	21
	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P	ΔE	%P
Isolated	1.06	14.3	0.00	85.7	4.97	0.0	5.58	0.0	6.80	0.0	6.68	0.0	6.43	0.0	7.91	0.0	7.08	0.0	6.12	0.0	6.75	0.0	9.12	0.0
CH ₂ Cl ₂	1.50	7.3	0.00	91.3	2.78	0.8	4.16	0.1	5.49	0.0	4.00	0.1	3.47	0.3	6.10	0.0	6.65	0.0	4.32	0.1	5.43	0.0	6.66	0.0
Acetone	1.42	8.1	0.00	89.2	2.44	1.4	3.93	0.1	5.18	0.0	3.36	0.3	2.84	0.7	5.62	0.0	6.52	0.0	4.11	0.1	5.22	0.0	6.26	0.0
Acetonitrile	1.07	13.6	0.00	83.0	2.32	1.7	3.85	0.1	5.06	0.0	3.11	0.4	2.60	1.0	5.43	0.0	6.47	0.0	4.04	0.1	5.14	0.0	6.11	0.0
DMSO	1.04	14.1	0.00	82.2	2.28	1.8	3.82	0.1	5.01	0.0	3.02	0.5	2.52	1.2	5.36	0.0	6.45	0.0	4.02	0.1	5.11	0.0	6.07	0.0
Methanol	1.08	13.4	0.00	83.3	2.33	1.6	3.86	0.1	5.07	0.0	3.14	0.4	2.64	1.0	5.45	0.0	6.48	0.0	4.05	0.1	5.15	0.0	6.13	0.0
Water	1.01	14.8	0.00	81.0	2.22	1.9	3.79	0.1	4.96	0.0	2.91	0.6	2.42	1.4	5.27	0.0	6.43	0.0	3.98	0.1	5.08	0.0	6.00	0.0

Table S5: Compound **2** conformer relative energies (ΔH) in kcal mol⁻¹ and corresponding populations (%P) obtained at the B3LYP-D3/aug-cc-pVDZ level for the isolated compounds and by using the IEF-PCM implicit solvent model with dichloromethane, acetone, acetonitrile, DMSO, methanol and water dielectric constants.

	2	a	2	b	2	c	2	d	2	e	2	f	2	g	2	h	2	i	2	j	21	5	2	
	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P	ΔH	%P
Isolated	1.28	10.3	0.00	89.7	4.90	0.0	5.63	0.0	6.88	0.0	6.42	0.0	6.33	0.0	7.92	0.0	7.38	0.0	6.17	0.0	6.87	0.0	9.36	0.0
CH ₂ Cl ₂	1.61	6.1	0.00	92.6	2.82	0.8	4.23	0.1	5.59	0.0	3.94	0.1	3.51	0.2	6.20	0.0	6.91	0.0	4.48	0.0	5.53	0.0	7.01	0.0
Acetone	1.59	6.2	0.00	91.2	2.48	1.4	4.03	0.1	5.29	0.0	3.33	0.3	2.92	0.7	5.72	0.0	6.79	0.0	4.29	0.1	5.31	0.0	6.63	0.0
Acetonitrile	1.17	11.8	0.00	85.1	2.36	1.6	3.95	0.1	5.17	0.0	3.10	0.5	2.69	0.9	5.54	0.0	6.74	0.0	4.23	0.1	5.22	0.0	6.48	0.0
DMSO	1.14	12.3	0.00	84.3	2.32	1.7	3.93	0.1	5.13	0.0	3.02	0.5	2.62	1.0	5.48	0.0	6.72	0.0	4.20	0.1	5.20	0.0	6.44	0.0
Methanol	1.18	11.6	0.00	85.4	2.37	1.5	3.96	0.1	5.18	0.0	3.13	0.4	2.72	0.9	5.56	0.0	6.74	0.0	4.23	0.1	5.24	0.0	6.50	0.0
Water	1.10	12.9	0.00	83.2	2.26	1.8	3.90	0.1	5.07	0.0	2.92	0.6	2.52	1.2	5.39	0.0	6.70	0.0	4.18	0.1	5.16	0.0	6.37	0.0

Table S6: Compound **2** conformer relative energies (ΔG) in kcal mol⁻¹ and corresponding populations (%P) obtained at the B3LYP-D3/aug-cc-pVDZ level for the isolated compounds and by using the IEF-PCM implicit solvent model with dichloromethane, acetone, acetonitrile, DMSO, methanol and water dielectric constants.

	2	a	2	b	2	c	2	d	2	e	2	f	2	g	2	h	2	i	2	j	2	k	2	I
	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P	ΔG	%P
Isolated	0.74	22.3	0.00	77.3	5.36	0.0	6.03	0.0	6.93	0.0	6.19	0.0	6.14	0.0	7.83	0.0	6.97	0.0	6.21	0.0	7.67	0.0	10.22	0.0
CH ₂ Cl ₂	0.64	25.1	0.00	74.4	3.39	0.2	4.22	0.1	5.37	0.0	4.39	0.0	3.64	0.2	6.42	0.0	7.23	0.0	5.16	0.0	6.05	0.0	7.98	0.0
Acetone	0.70	23.2	0.00	75.7	3.06	0.4	3.93	0.1	5.12	0.0	3.78	0.1	3.13	0.4	5.67	0.0	7.16	0.0	5.00	0.0	5.80	0.0	7.54	0.0
Acetonitrile	0.63	25.4	0.00	73.2	2.92	0.5	4.04	0.1	4.98	0.0	3.57	0.2	2.94	0.5	5.44	0.0	7.16	0.0	4.95	0.0	5.71	0.0	7.42	0.0
DMSO	0.61	25.8	0.00	72.7	2.87	0.6	4.06	0.1	4.92	0.0	3.49	0.2	2.85	0.6	5.36	0.0	7.16	0.0	4.92	0.0	5.67	0.0	7.38	0.0
Methanol	0.64	25.0	0.00	73.7	2.94	0.5	4.03	0.1	5.00	0.0	3.60	0.2	2.96	0.5	5.47	0.0	7.16	0.0	4.96	0.0	5.72	0.0	7.44	0.0
Water	0.61	25.7	0.00	72.6	2.80	0.6	4.08	0.1	4.84	0.0	3.40	0.2	2.76	0.7	5.27	0.0	7.16	0.0	4.89	0.0	5.63	0.0	7.34	0.0

Figure S1: Geometrical representations of Ac-Ala-NHMe conformers obtained at the B3LYP-D3/aug-cc-pVDZ level.

Figure S2: Geometrical representations of Ac-Ala-N(Me)₂ conformers obtained at the B3LYP-D3/aug-cc-pVDZ level.

Table S7: QTAIM molecular graphs of compound **1** most stable conformers obtained from B3LYP-D3/aug-cc-pVDZ optimisations. Electron density (ρ), Laplacian of the electron density ($\nabla^2 \rho$) and ellipticity values (ε , au) in the N-H···O (**1a-1c**) and N-H···N (**1d**) intramolecular hydrogen bond (IHB) bond critical point (BCP) are indicated for each case.

	1 a	1b	1c	1 d	1j
	2 the	- A-	-	J.J.K	XAX
ho	0.022		0.029	0.017	
abla ho	+0.065		+0.095	+0.065	
З	0.035		0.038	1.261	

Figure S3: Graphs of ELF value along the bond path of the IHBs for the most stable conformers of compound 1. The graph for compound 1j measures ELF values on the C=O \cdots C bond path. Core valence bifurcation index (CVBI) values (au) for each case obtained from those graphs are also indicated.

Figure S4: Graph of the RDG *vs* sign(λ_2) ρ for the main conformers of compound **1**. Values of sign(λ_2) ρ (au) corresponding to IHBs peaks in the (RDG) *vs* sign(λ_2) ρ graphs are given for each case.

Figure S5:. DORI vs sign(λ_2) ρ graphs for the most stable conformers of compound **1**. DORI values were multiplied by 10²⁰ in order to obtain sharper DORI peaks.

Figure S6: NBO plots of $n \to \sigma^*_{\text{NH}}$ interactions for main conformers of **1.** Figures were obtained at the B3LYP-D3/aug-cc-pVDZ level with an isovalue of 0.04 au. $n \to \sigma^*_{\text{NH}}$ energy values are given in kcal mol⁻¹.

Table S8: QTAIM molecular graphs of compound **2** most stable conformers obtained from B3LYP-D3/aug-cc-pVDZ optimisations. Electron density (ρ), Laplacian of the electron density ($\nabla^2 \rho$) and ellipticity values (ε , au) in the C-H···O=C (**2a**) and C-H···O=C (**2b**) IHB bond critical point (BCP) are indicated.

Figure S7: ELF localization domains, built with an 0.8 au isodensity value, and graphs of ELF value along the bond path of the IHBs for the most stable conformers of compound **2**. Core valence bifurcation index (CVBI) values (au) for each case obtained from those graphs are also indicated.

Figure S8: Graph of the RDG *vs* sign(λ_2) ρ for the most stable conformers of compound **2**. Values of sign(λ_2) ρ (au) corresponding to IHBs peaks in the (RDG) *vs* sign(λ_2) ρ graphs are given for each case. NCI figures were obtained with a blue-green-red scale ranging from -0.02 < sign λ_2 < 0.02 au and with a RDG cutoff of 0.5 au. Sign(λ_2) ρ values given are related to the C-H···O=C (**2a**) and N-H···O=C IHBs (**2b**).

Figure S9: DORI vs sign(λ_2) ρ graphs for the most stable conformers of compound **1**. DORI values were multiplied by 10²⁰ in order to obtain sharper DORI peaks.

Figure S10: NBO plots of $n \to \sigma^*_{\text{NH}}$ interactions for main conformers of **1.** Figures were obtained at the B3LYP-D3/aug-cc-pVDZ level with an isovalue of 0.04 au. $n \to \sigma^*_{\text{NH}}$ energy values are given in kcal mol⁻¹.

Spectrum S1: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in CD₂Cl₂.

Spectrum S2: Experimental ¹H NMR homonuclear decoupling spectrum of Ac-Ala-NHMe in CD₂Cl₂. (irradiated CH₃ signal at ~1.3 ppm)

Spectrum S3: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in acetone-d₆.

Spectrum S4: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in acetone-d₆ (irradiated CH₃ signal at ~1.3 ppm).

Spectrum S5: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in CD₃CN.

Spectrum S6: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in CD₃CN (irradiated CH₃ signal at ~1.3 ppm).

Spectrum S7: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in DMSO-d₆.

Spectrum S8: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in DMSO-d₆ (irradiated CH₃ signal at ~1.3 ppm).

Spectrum S9: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in CD₃OH.

Spectrum S10: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in CD₃OH (irradiated CH₃ signal at ~1.3 ppm).

Spectrum S11: Experimental ¹H NMR spectrum of Ac-Ala-NHMe in H₂O, using D₂O in a insertion tube.

Spectrum S12: Experimental ¹H NMR homonuclear decoupling spectrum of Ac-Ala-NHMe in H_2O , using D_2O in a insertion tube (irradiated CH₃ signal at ~1.3 ppm).