Electronic Supplementary Informations

A radical approach for fluorescent turn ‘on’ detection, differentiation and bioimaging of methanol

Virendra Kumar,² Ajit Kumar,² Uzra Diwan,² Manish Kumar Singh,² and K. K. Upadhyay²*

*Department of Chemistry (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India.
²Department of Zoology (Centre of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India.
E-mail: drkaushalbhu@ yahoo.co.in; kku@bhu.ac.in, Tel No.: +91-542-6702488

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Figures</th>
<th>Captions</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>Experimental section</td>
<td>3-5</td>
</tr>
<tr>
<td>2.</td>
<td>Figure S1</td>
<td>¹⁹H NMR spectrum of RC in CDCl₃</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Figure S2</td>
<td>¹³C NMR spectrum of RC in CDCl₃</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Figure S3</td>
<td>IR spectrum of RC</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Figure S4</td>
<td>Mass spectrum of RC</td>
<td>9</td>
</tr>
<tr>
<td>6.</td>
<td>Figure S5</td>
<td>UV-visible absorbance spectrum of RC in different solvent</td>
<td>10</td>
</tr>
<tr>
<td>7.</td>
<td>Figure S6a & b</td>
<td>Visible/fluorescence color changes of RC in different solvents</td>
<td>11</td>
</tr>
<tr>
<td>8.</td>
<td>Figure S7</td>
<td>¹⁹H NMR spectrum of RO in CDCl₃</td>
<td>12</td>
</tr>
<tr>
<td>9.</td>
<td>Figure S8</td>
<td>Proposed mechanism of nucleophile attack of methanol over RC</td>
<td>13</td>
</tr>
<tr>
<td>10.</td>
<td>Figure S9</td>
<td>IR spectrum of RO</td>
<td>14</td>
</tr>
<tr>
<td>11.</td>
<td>Figure S10</td>
<td>Overlay IR spectrum of RC and RO</td>
<td>15</td>
</tr>
<tr>
<td>12.</td>
<td>Figure S11</td>
<td>Mass spectrum of RO</td>
<td>16</td>
</tr>
<tr>
<td>13.</td>
<td>Figure S12</td>
<td>HOMO-LUMO orbitals of RC and RO their calculated energy and energy gaps</td>
<td>17</td>
</tr>
</tbody>
</table>
Electronic Supplementary Informations

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>Figure S13</td>
<td>Fluorescence reaction time profile of receptor RC at 0.5μM in MeOH</td>
</tr>
<tr>
<td>15.</td>
<td>Figure S14</td>
<td>Calibration curve of RC in water with increasing MeOH%</td>
</tr>
<tr>
<td>16.</td>
<td>Table S1</td>
<td>Important bond length and bond angle of RO</td>
</tr>
<tr>
<td>17.</td>
<td>Table S2</td>
<td>Crystal data and structure refinement for RO</td>
</tr>
<tr>
<td>18.</td>
<td>Table S3</td>
<td>The selected experimental and calculated dihedral angles in RC and RO</td>
</tr>
<tr>
<td>19.</td>
<td>Table S4</td>
<td>Theoretical calculation of absorption maxima of RC and RO in MeOH using TD-DFT study</td>
</tr>
</tbody>
</table>

Experimental section
1.1. **Synthesis of RC**: RC was synthesized by adding 2.0 mM acetonitrile solution of 7-(diethylamino)-2-oxo-2H-chromene-3-carbaldehyde to the equimolar acetonitrile solution of 3-aminorhodanine followed by constant stirring for three hours at room temperature (**Scheme 1**). A brick red solid was precipitated which was filtered and washed with diethyl ether and finally dried under vacuum over anhydrous CaCl₂. **RC** was characterized through various spectroscopic techniques like IR, ¹H & ¹³C NMR spectral studies along with mass determination through ESI-MS (**ESI; Fig. S1-S4**).

Scheme 1: Synthesis of **RC**

Spectroscopic characterization data: **Yield**: 86%. **IR/cm⁻¹**: 2971, 2929, 1741, 1709, 1620, 1598, 1563, 1513, 1483, 1379, 1350, 1311, 1295, 1259, 1233, 1188, 1133, 1078, 1029, 955, 904, 875, 796, 761, 688, 637; **¹H NMR (300 MHz, CDCl₃, 298K, TMS)**: δ = 1.233-1.279 (t, 6H, CH₃), 3.433-3.504 (q, 4H, CH₂), 4.077 (s, 2H, CH₂), 6.490 (s, 1H, Ar-H), 6.613-6.635, (d, 1H, Ar-H), 7.369-7.399 (d, 1H, Ar-H), 8.587, (s, 1H, Ar-H), 8.740 (s, 1H, –CH=N) δ ppm; **¹³C NMR (75
1.2. **Apparatus:** IR Spectra were recorded with a Perkin-Elmer spectrometer using KBr pellets. The corresponding 1H NMR and 13C NMR spectra were recorded in CDCl$_3$ with a JEOL AL 300 FT NMR Spectrometer instrument using tetramethylsilane (Si(CH$_3$)$_4$) as an internal standard. 1H and 13C chemical shifts are reported in parts per million (ppm) relative to the residual proton signal of the deuterated solvents. Mass spectrometric analysis was carried out on a MDS Sciex API 2000 LCMS spectrometer while HRMS of RO was recorded at Water-Q-Tof Premier-HAB213. The electronic spectra and UV-visible titrations were carried out room temperature (298 K) on a UV-1700/1800 Pharmaspec spectrophotometer with quartz cuvette (path length=1 cm). The emission spectra were recorded at JY HORIBA Fluorescence spectrophotometer.

1.3. **Materials:** All the reagents and solvents for synthesis were purchased from Sigma-Aldrich and were used without further purification. All reactions were carried out using commercial-grade solvents.

1.4. **Theoretical Calculations:** The geometric and energy optimizations were performed with the Gaussian 03 program based on the density functional theory (DFT) method. Becke’s three parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) was employed for all the calculations. The 3-21G** basis set was used to treat all atoms.

1.5. **X-ray diffraction studies:** Single crystal X-ray diffraction measurements were carried out on an Oxford Diffraction Xcalibur system with a Ruby CCD detector using graphite-monochromated MoKα radiation ($\lambda = 0.71073 \, \text{Å}$). All the determinations of unit cell and intensity data were performed with graphite-mono-chromated Mo-Kα radiation ($\lambda = 0.71073 \, \text{Å}$). Data for the ligand and metal complexes were collected at room temperature/liquid nitrogen temperature. The structures were solved by direct methods, using Fourier techniques, and refined by full-matrix least-squares on F^2 using the SHELXTL-97 program package.

1.6. **Cell Imaging Studies:** *E. coli* strains (DH5-α) were grown in LB media at 37° C overnight in shaker incubator. The cells were collected in sterile water and vortexed to make the suspension homogeneous. These cell cultures were incubated with RC
Electronic Supplementary Informations

(10µM) from 1.0 mM stock in 50mM phosphate buffer (pH 7.54) for 1 hour. The treated cells were examined by the excitation range from 450-490 nm and emission range from 500-560 nm on a fluorescence microscope (Nikon-E800, Japan).

References:

S2. (a) G. M. Sheldrick, SHELXL-97, Program for X-ray Crystal Structure Refinement, Göttingen University, Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution, Göttingen University, Göttingen, Germany, 1997.
Figure S1: 1H NMR spectrum of RC in CDCl$_3$:
Figure S2: 13C NMR spectrum of RC:
Figure S3: IR spectrum of RC:
Figure S4: Mass spectrum of RC:

[M+H]$^+$

Chemical Formula: $C_{12}H_{11}N_3O_3S_2$

Molecular Weight: 375.4652
Electronic Supplementary Informations

Figure S5: UV-visible absorbance spectrum of RC in different solvent:

![UV-visible absorbance spectrum of RC in different solvent](image)
Electronic Supplementary Informations

Figure S6a: Selective visible color changes of **RC** in various solvents; from left to right: CHCl$_3$, DCM, Toluene, THF, Ethylacetate, ACN, Acetone, MeOH, EtOH, Propanol, Butanol, DMF, and DMSO

![Selective visible color changes of RC in various solvents](image)

Figure S6b: Selective fluorescence color changes (Under UV light) of **RC** in various solvents; from left to right: **RC**, MeOH, EtOH, Propanol, Butanol, Acetone, Ethyl acetate, Toluene, DCM, CHCl$_3$, THF, ACN, DMF, DMSO and Water.

![Selective fluorescence color changes (Under UV light)](image)
Figure S7: 1H NMR spectrum of RO in CDCl$_3$:

![NMR Spectrum](image)
Figure S8: Proposed mechanism of nucleophile attack of methanol over RC:

Where, \(R = \text{Coumarin} \)
Figure S9: IR spectrum of RO:
Figure S10: Overlay IR spectrum of RC and RO:
Figure S11: Mass spectrum of RO:

Chemical Formula: C_{16}H_{27}N_{2}NaO_{3}S_{2}
Exact Mass: 430.0871
Electronic Supplementary Informations

Figure S12: HOMO-LUMO orbitals of RC and RO their calculated energy and energy gaps are shown:
Figure S13: Fluorescence reaction time profile of receptor **RC** at 0.5μM in MeOH:
Figure S14: Calibration curve of RC in water with increasing MeOH%:

\[
y = 79599x + 113827 \\
R^2 = 0.9954
\]
Table S1: Important bond length and bond angle of RO:

<table>
<thead>
<tr>
<th>Atom</th>
<th>Bond Length(Å)</th>
<th>Atom</th>
<th>Bond angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(2)-C(16)</td>
<td>1.786(3)</td>
<td>C(16)-S(2)-C(15)</td>
<td>100.1(1)</td>
</tr>
<tr>
<td>S(2)-C(15)</td>
<td>1.752(2)</td>
<td>C(9)-O(1)-C(13)</td>
<td>122.7(2)</td>
</tr>
<tr>
<td>S(1)-C(15)</td>
<td>1.643(2)</td>
<td>N(3)-N(2)-C(14)</td>
<td>116.1(2)</td>
</tr>
<tr>
<td>O(1)-C(9)</td>
<td>1.377(3)</td>
<td>C(17)-O(4)-C(18)</td>
<td>115.1(2)</td>
</tr>
<tr>
<td>O(1)-C(13)</td>
<td>1.381(3)</td>
<td>N(2)-N(3)-C(15)</td>
<td>119.2(2)</td>
</tr>
<tr>
<td>N(2)-N(3)</td>
<td>1.383(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-C(14)</td>
<td>1.271(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)-C(17)</td>
<td>1.343(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)-C(18)</td>
<td>1.445(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-C(13)</td>
<td>1.202(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(3)-C(15)</td>
<td>1.339(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Showing intermolecular hydrogen bonding in **RO**
Electronic Supplementary Informations

Table S2: Crystal data and structure refinement for **RO:**

<table>
<thead>
<tr>
<th>Identification code</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC No.</td>
<td>980304</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C18 H21 N3 O4 S2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>407</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic, P -1</td>
</tr>
</tbody>
</table>
| Unit cell dimensions | a = 6.9629(13) Å alpha = 102.726(18) deg.
 | b = 10.231(3) Å beta = 97.404(16) deg.
 | c = 14.781(2) Å gamma = 94.658(18) deg. |
| Volume | 1012.0(3) Å³ |
| Z, Calculated density | 2, 1.334 Mg/m3 |
| Absorption coefficient | 0.291 mm-1 |
| F(000) | 428.0 |
| Crystal size | 0.34 x 0.28 x 0.22 mm |
| Theta range for data collection | 2.97 to 28.99 deg. |
| Limiting indices | -8<=h<=9, -9<=k<=13, -19<=l<=19 |
| Reflections collected / unique | 6963 / 4036 [R(int) = 0.0397] |
| Completeness to theta = 25.00 | 99.0 % |
| Max. and min. transmission | 1.00000 and 0.94362 |
| Refinement method | Full-matrix least-squares on F2 |
| Data / restraints / parameters | 4036 / 0 / 248 |
| Goodness-of-fit on F2 | 0.960 |
| Final R indices [I>2sigma(I)] | R1 = 0.0574, wR2 = 0.0556 |
| R indices (all data) | R1 = 0.1294, wR2 = 0.0712 |
| Largest diff. peak and hole | 0.213 and -0.161 e.Å-3 |
Electronic Supplementary Informations

Table S3: The selected experimental and calculated dihedral angles in **RC** and **RO**:

![Chemical structures of RC and RO](image)

Dihedral angles of RC and RO

- DA1 = C1-C2-C3=N1
- DA2 = C2-C3=N1-N2
- DA3 = C3-N1-N2-C4
- DA4 = N1-N2-C4-S1

<table>
<thead>
<tr>
<th></th>
<th>DFT calculated structure</th>
<th>Single Crystal Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RC</td>
<td>RO</td>
</tr>
<tr>
<td>DA1</td>
<td>177.19</td>
<td>177.96</td>
</tr>
<tr>
<td>DA2</td>
<td>177.62</td>
<td>179.64</td>
</tr>
<tr>
<td>DA3</td>
<td>139.15</td>
<td>-179.97</td>
</tr>
<tr>
<td>DA4</td>
<td>-11.13</td>
<td>179.73</td>
</tr>
</tbody>
</table>
Electronic Supplementary Informations

Table S4: Theoretical calculation of absorption maxima of **RC** and **RO** in MeOH using TD-DFT study:

![Chemical structures of RC and RO](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Major transitions</th>
<th>Wavelength</th>
<th>Oscillator strength</th>
<th>Energy</th>
<th>Contributions of Excitation</th>
</tr>
</thead>
</table>
| **RO** | 107 \rightarrow 108
0.63996 | 449.17 nm
f=1.3047 | 2.7603 eV
HOMO \rightarrow LUMO $= 81.9$ |
| **RC** | 98 \rightarrow 99
0.63028 | 428.38 nm
f=0.9064 | 2.8943 eV
HOMO \rightarrow LUMO $= 79.45$ |