Palladium-catalyzed Direct and Regioselective C-H Acyloxylation of Indolizines

Jinwei Sun,a Fuyao Wang,a Yongmiao Shen,b Huizhen Zhi,c Hui Wu,a,* Yun Liu,a,*

a Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials and Institute of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 22116, Jiangsu, P. R. China

b School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang, P. R. China

c School of Chemistry and Chemical Engineering, Nanjing Normal University, Nanjing, 210023, Zhejiang, P. R. China

E-mail: wuhui72@126.com; xznuliuyun@jsnu.edu.cn

Table of Content

1. Copies of 1H NMR and 13C NMR of Compounds 2 S2

2. Copies of 1H NMR and 13C NMR of Compounds 3 S22

3. Copies of 1H NMR and 13C NMR of Compounds 4, 5, 6 S30

4. DFT calculation of 3-acylindolizine and 2-esterindolizine S35

5. ORTEP drawing of 2t S36
B3LYP/6-31+G(d,p) Optimized Geometries and Atomic charges in 3-methoxycarbonylindolizine

Method: DFT, functional B3LYP, basis set 6-311+G(d,p), gas phase

Mulliken atomic charges at carbon atoms:

Mulliken charges with hydrogens summed into their linked carbon atoms:

B3LYP/6-31+G(d,p) Optimized Geometries and Atomic charges in Methyl indolizine-2-carboxylate

Method: DFT, functional B3LYP, basis set 6-311+G(d,p), gas phase

Mulliken atomic charges at carbon atoms:

Mulliken charges with hydrogens summed into their linked carbon atoms:
ORTEP drawing of $2t$ (CCDC 1049376)