Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

S-Linked Sialyloligosaccharides Bearing Liposomes and Micelles as Influenza Virus Inhibitors

Hsien-Wei Yeh,¹ Tzung-Sheng Lin,¹ Hsiao-Wen Wang,¹ Hou-Wen Cheng,¹ Der-Zen Liu,^{2,3,*}

Pi-Hui Liang^{1,*}

H.-W. Yeh, T.-S. Lin, H.-W. Wang, H.-W. Cheng, Prof. Dr. P.-H. Liang1. School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan.E-mail: <u>phliang@ntu.edu.tw</u>

Prof. Dr. D. Z. Liu

2. Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, TaiwanEmail: tonyliu@tmu.edu.tw

3. Center for General Education, Hsuan Chuang University, Hsinchu City 300, Taiwan

Table of contents

Table S1. Parameters of liposomes

Figure S1 to Figure S36: 1D and 2D NMR spectrum of compounds 3-4, 7, 9-12, 14-17. Figure S37 & S38: HPLC diagram for compound 3 and 4.

	Mean diameter (nm)	Polydispersity	Zeta potential (mV)
Lipo-control	396 ± 19	0.319 ± 0.011	-20.5 ± 2.9
Lipo-3	196 ± 16	0.173 ± 0.013	-22.3 ± 6.8
Lipo-4	356 ± 34	0.317 ± 0.012	-38.3 ± 6.6

 Table S1. Parameters of liposomes.

Figure S2. ¹³C-NMR spectra of 7 (CDCl₃, 100 MHz), BBD

Figure S6. ¹³C-NMR spectra of 10 (CDCl₃, 100 MHz), BBD

Figure S8. 13C-NMR spectra of 11 (CDCl₃, 100 MHz), BBD

Figure S10. 13C-NMR spectra of 12 (CDCl₃, 150 MHz), BBD

Figure S11. COSY-NMR spectra of 12 (CDCl₃, 600 MHz)

Figure S12. HSQC-NMR spectra of 12(CDCl₃, 600 MHz)

Figure S18. ¹³C-NMR spectra of 15 (CDCl₃, 150 MHz), BBD

Figure S28. HSQC-NMR spectra of $17 (D_2O, 600 \text{ MHz})$

Figure S30. ¹³C-NMR spectra of 3 (pyridine-D₅, 150 MHz), BBD

Figure S31. COSY-NMR spectra of 3(pyridine-D₅, 600 MHz)

Figure S37. HPLC diagram of compound **3** by using Hitachi system with L-2130 pump, L-2200 autosampler and L-2200 detector. Column: syncronis C18 column (4.6mm×250, 5µm; Thermo). Elution: isocratic 55% MeCN in water at flow rate of 1.0 mL/min; the absorbance was measured at 214 nm; $t_R = 9.94$ min, purity: 100%.

Figure S38. HPLC diagram of compound **4** by using Hitachi system with L-2130 pump, L-2200 autosampler and L-2200 detector. Column: syncronis C18 column (4.6mm×250, 5µm; Thermo). Elution: isocratic 55% MeCN in water at flow rate of 1.0 mL/min; the absorbance was measured at 214 nm; $t_R = 7.18$ min, purity: 100%.