Synthesis of oligodiaminomannoses and analysis of their RNA duplex binding properties and their potential application as siRNA-based drugs

Rintaro Iwataa,c, Akiko Doib,c, Yusuke Maedaa,c and Takeshi Wadaa,a, b, c

aFaculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 Japan, bDepartment of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, cJST-CREST, K's Gobancho 6F, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan

Table of contents

UV melting curves 2

1H and 13C NMR spectra of compounds 4
Figure S1. UV melting curve of rA12-rU12 (5 μM) in the presence of ODAMans

Figure S2. UV melting curve of r(CGCGAAUUCGCG)₃ (5 μM) in the presence of ODAMans
Figure S3. UV melting curve of siRNA (2.5 μM) in the presence of ODAMans
Figure S4. 1H NMR spectrum of compound 2 in CDCl$_3$ (300 MHz).

Figure S5. 13C NMR spectrum of compound 2 in CDCl$_3$ (75.45 MHz).
Figure S6. 1H NMR spectrum of compound 3 in CDCl$_3$ (300 MHz).

Figure S7. 13C NMR spectrum of compound 3 in CDCl$_3$ (75.45 MHz).
Figure S8. 1H NMR spectrum of compound 4 in CDCl$_3$ (300 MHz).

Figure S9. 13C NMR spectrum of compound 4 in CDCl$_3$ (75.45 MHz).
Figure S10. 1H NMR spectrum of compound 5 in CDCl$_3$ (300 MHz).

Figure S11. 13C NMR spectrum of compound 5 in CDCl$_3$ (300 MHz).
Figure S12. 1H NMR spectrum of compound 6 in CDCl$_3$ (300 MHz).

Figure S13. 13C NMR spectrum of compound 6 in CDCl$_3$ (75.45 MHz).
Figure S14. 1H NMR spectrum of compound 7 in CDCl$_3$ (300 MHz).

Figure S15. 13C NMR spectrum of compound 7 in CDCl$_3$ (75.45 MHz).
Figure S16. 1H NMR spectrum of compound 8 in CDCl$_3$ (300 MHz).

Figure S17. 13C NMR spectrum of compound 8 in CDCl$_3$ (75.45 MHz).
Figure S18. 1H NMR spectrum of compound 9 in CDCl$_3$ (300 MHz).

Figure S19. 13C NMR spectrum of compound 9 in CDCl$_3$ (75.45 MHz).
Figure S20. 1H NMR spectrum of compound 10 in CDCl$_3$ (300 MHz).

Figure S21. 13C NMR spectrum of compound 10 in CDCl$_3$ (75.45 MHz).
Figure S22. 1H NMR spectrum of compound 11 in CDCl$_3$ (300 MHz).

Figure S23. 13C NMR spectrum of compound 11 in CDCl$_3$ (75.45 MHz).
Figure S24. 1H NMR spectrum of compound 12 in CDCl$_3$ (300 MHz).

Figure S25. 13C NMR spectrum of compound 12 in CDCl$_3$ (75.45 MHz).
Figure S26. 1H NMR spectrum of compound 13 in CDCl$_3$ (300 MHz).

Figure S27. 13C NMR spectrum of compound 13 in CDCl$_3$ (75.45 MHz).
Figure S28. 1H NMR spectrum of compound 14 in CDCl$_3$ (300 MHz).

Figure S29. 1C NMR spectrum of compound 14 in CDCl$_3$ (75.45 MHz).
Figure S30. 1H NMR spectrum of compound 15 in CDCl$_3$ (300 MHz).

Figure S31. 13C NMR spectrum of compound 15 in CDCl$_3$ (75.45 MHz).
Figure S32. 1H NMR spectrum of compound 16 in CDCl$_3$ (300 MHz).

Figure S33. 13C NMR spectrum of compound 16 in CDCl$_3$ (75.45 MHz).
Figure S34. 1H NMR spectrum of compound 17 in CDCl$_3$ (300 MHz).

Figure S35. 13C NMR spectrum of compound 17 in CDCl$_3$ (75.45 MHz).
Figure S36. 1H NMR spectrum of compound 23 in D$_2$O (300 MHz).

Figure S37. 13C NMR spectrum of compound 23 in D$_2$O (75.45 MHz).
Figure S38. 1H NMR spectrum of compound 24 in D$_2$O (300 MHz).

Figure S39. 13C NMR spectrum of compound 24 in D$_2$O (75.45 MHz).
Figure S40. 1H NMR spectrum of compound 25 in D$_2$O (300 MHz).

Figure S41. 13C NMR spectrum of compound 25 in D$_2$O (75.45 MHz).
Figure S42. 1H NMR spectrum of compound 26 in D$_2$O (300 MHz).

Figure S43. 13C NMR spectrum of compound 26 in D$_2$O (75.45 MHz).
Figure S44. 1H NMR spectrum of compound 27 in D$_2$O (300 MHz).

Figure S45. 13C NMR spectrum of compound 27 in D$_2$O (75.45 MHz).