Electronic Supplementary Information

Gold(I) catalysed sequential dehydrative cyclisation/ intermolecular [4+2] cycloaddition of alkynylidenols onto activated alkynes/ alkenes; A facile route to substituted norbornadienes/ norbornenes

Anasuyamma Uruvakilli, G. Gangadhararao and K. C. Kumara Swamy*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, A. P., India.
E-mail: kckssc@yahoo.com, kckssc@uohyd.ac.in

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Copies of 1H/13C NMR spectra of all new compounds (Figures S1-S90)</td>
<td>S2-S47</td>
</tr>
<tr>
<td>2</td>
<td>HRMS of the reaction mixture using 5bb in the absence of DMAD showing the intermediate (Figure S91)</td>
<td>S48</td>
</tr>
<tr>
<td>3</td>
<td>HPLC trace for compounds 27-29 (Figure S92-S94)</td>
<td>S49-S50</td>
</tr>
<tr>
<td>4</td>
<td>X-ray structure of compounds 5aa and 25 (Figure S95-S96)</td>
<td>S51</td>
</tr>
</tbody>
</table>
Figure S1. 1H NMR spectrum of compound 4aa

Figure S2. 13C NMR spectrum of compound 4aa
Figure S3. 1H NMR spectrum of compound 4ab

Figure S4. 13C NMR spectrum of compound 4ab
Figure S5. 1H NMR spectrum of compound 4ac

Figure S6. 13C NMR spectrum of compound 4ac
Figure S7. 1H NMR spectrum of compound 4ad

Figure S8. 13C NMR spectrum of compound 4ad
Figure S9. 1H NMR spectrum of compound 4ba

Figure S10. 13C NMR spectrum of compound 4ba
Figure S11. \(^1\)H NMR spectrum of compound 4bb

Figure S12. \(^{13}\)C NMR spectrum of compound 4bb
Figure S13. 1H NMR spectrum of compound 4ca

Figure S14. 13C NMR spectrum of compound 4ca
Figure S15. 1H NMR spectrum of compound 4cb

Figure S16. 13C NMR spectrum of compound 4cb
Figure S17. 1H NMR spectrum of compound 4da

Figure S18. 13C NMR spectrum of compound 4da
Figure S19. 1H NMR spectrum of compound 4aac

Figure S20. 13C NMR spectrum of compound 4aac
Figure S21. 1H NMR spectrum of compound 5aa

Figure S22. 13C NMR spectrum of compound 5aa
Figure S23. 1H NMR spectrum of compound 5ab

Figure S24. 13C NMR spectrum of compound 5ab
Figure S25. 1H NMR spectrum of compound 5ac

Figure S26. 13C NMR spectrum of compound 5ac
Figure S27. 1H NMR spectrum of compound 5ad

Figure S28. 13C NMR spectrum of compound 5ad
Figure S29. 1H NMR spectrum of compound 5ba

Figure S30. 13C NMR spectrum of compound 5ba
Figure S31. 1H NMR spectrum of compound 5bb

Figure S32. 13C NMR spectrum of compound 5bb
Figure S33. 1H NMR spectrum of compound 5ca

Figure S34. 13C NMR spectrum of compound 5ca
Figure S35. 1H NMR spectrum of compound 5cb

Figure S36. 13C NMR spectrum of compound 5cb
Figure S37. 1H NMR spectrum of compound 5da

Figure S38. 13C NMR spectrum of compound 5da
Figure S39. 1H NMR spectrum of compound 5aac

Figure S40. 13C NMR spectrum of compound 5aac
Figure S41. 1H NMR spectrum of compound 8

Figure S42. 13C NMR spectrum of compound 8
Figure S43. 1H NMR spectrum of compound 9

Figure S44. 13C NMR spectrum of compound 9
Figure S45. 1H NMR spectrum of compound 10

Figure S46. 13C NMR spectrum of compound 10
Figure S47. 1H NMR spectrum of compound 11

Figure S48. 13C NMR spectrum of compound 11
Figure S49. 1H NMR spectrum of compound 12

Figure S50. 13C NMR spectrum of compound 12
Figure S51. 1H NMR spectrum of compound 13

Figure S52. 13C NMR spectrum of compound 13
Figure S53. ^1H NMR spectrum of compound 14

Figure S54. ^{13}C NMR spectrum of compound 14
Figure S55. 1H NMR spectrum of compound 15

Figure S56. 13C NMR spectrum of compound 15
Figure S57. 1H NMR spectrum of compound 16

Figure S58. 13C NMR spectrum of compound 16
Figure S59. 1H NMR spectrum of compound 17

Figure S60. 13C NMR spectrum of compound 17
Figure S61. 1H NMR spectrum of compound 18 (cf. main text for details)

Figure S62. 13C NMR spectrum of compound 18 (cf. main text for details)
Figure S63. 1H NMR spectrum of compound 19

Figure S64. 13C NMR spectrum of compound 19
Figure S65. 1H NMR spectrum of compound 20

Figure S66. 13C NMR spectrum of compound 20
Figure S67. 1H NMR spectrum of compound 21

Figure S68. 13C NMR spectrum of compound 21
Figure S69. 1H NMR spectrum of compound 22

Figure S70. 13C NMR spectrum of compound 22
Figure S71. 1H NMR spectrum of compound 23

Figure S72. 13C NMR spectrum of compound 23
Figure S73. 1H NMR spectrum of compound 24

Figure S74. 13C NMR spectrum of compound 24
Figure S75. 1H NMR spectrum of compound 25

Figure S76. 13C NMR spectrum of compound 25
Figure S77. 1H NMR spectrum of compound 26

Figure S78. 13C NMR spectrum of compound 26
Figure S79. NOESY spectrum of compound 26
Figure S80. NOESY expansion of compound 26
Figure S81. 1H NMR spectrum of compound 27

Figure S82. 13C NMR spectrum of compound 27
Figure S83. 1H NMR spectrum of compound 28

Figure S84. 13C NMR spectrum of compound 28
Figure S85. 1H NMR spectrum of compound 29

Figure S86. 13C NMR spectrum of compound 29
Figure S87. 1H NMR spectrum of compound 30

Figure S88. 13C NMR spectrum of compound 30
Figure S89. 1H NMR spectrum of compound 31

Figure S90. 13C NMR spectrum of compound 31
Figure S91. HRMS for the blank reaction mixture using 5bb + AuCl (i.e., without DMAD)
Detector A (254nm)

<table>
<thead>
<tr>
<th>Pk #</th>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.958</td>
<td>7486871</td>
<td>30.866</td>
<td>326658</td>
<td>32.242</td>
</tr>
<tr>
<td>2</td>
<td>12.817</td>
<td>12009002</td>
<td>49.509</td>
<td>438856</td>
<td>43.316</td>
</tr>
<tr>
<td>3</td>
<td>13.558</td>
<td>4760397</td>
<td>19.625</td>
<td>247632</td>
<td>24.442</td>
</tr>
</tbody>
</table>

Totals | 24256270 | 100.000 | 1013146 | 100.000 |

Figure S92. HPLC of compound 27 (isopropanol/hexane; 5:95; chiralpack AS-H column; 0.5 mL/min flow rate; peak at ~ 7 min is due to solvent)

Detector A (254nm)

<table>
<thead>
<tr>
<th>Pk #</th>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.608</td>
<td>22290103</td>
<td>76.512</td>
<td>397169</td>
<td>77.016</td>
</tr>
<tr>
<td>2</td>
<td>15.508</td>
<td>6842829</td>
<td>23.488</td>
<td>118527</td>
<td>22.984</td>
</tr>
</tbody>
</table>

Totals | 29132932 | 100.000 | 515696 | 100.000 |

Figure S93. HPLC of compound 28 (isopropanol/hexane; 5:95; chiralpack AS-H column; 0.5 mL/min flow rate; peak at ~ 7 min is due to solvent)
Figure S94. HPLC of compound 29 (isopropanol/hexane; 5:95; chiralpack AS-H column; 0.5 mL/min flow rate; peak at ~7 min is due to solvent)
Fig. S95. ORTEP (probability level 50%) of compound 5aa. Only one molecule (of the four) is shown. Selected bond lengths [Å] with esds in parentheses: O(1)-C(25) 1.408(3), C(7)-C(8) 1.490(2), C(8)-C(9) 1.436(3), C(9)-C(10) 1.194(3), C(10)-C(11) 1.438(3), C(8)-C(17) 1.351(2), C(24)-C(25) 1.486(3).

Figure S96. Molecular pictures of compound 25 (ORTEP probability level 50%). Selected bond lengths [Å] with esds in parentheses: C(1)-C(2) 1.345(6), C(1)-C(6) 1.559(6), C(1)-C(8) 1.418(6), C(2)-C(3) 1.532(5), C(3)-C(4) 1.550(6), C(3)-C(7) 1.502(6), C(4)-C(5) 1.533(6), C(5)-C(6) 1.592(5), C(8)-C(9) 1.191(5). The data quality was only moderate for this structure, and there appears to be some residual electron density close to C19. The exo-stereochemistry is clarified in the lower drawing.