Direct oxidative coupling of amidine hydrochlorides and methylarenes: TBHP-mediated synthesis of substituted 1,3,5-triazines under metal-free conditions

Wei Guoa,b,*

a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. *E-mail:guoweigw@126.com

b Key laboratory of organo-pharmaceutical chemistry of Jiangxi province, Gannan Normal University, Ganzhou, 341000, China

Supplementary Information

A. General methods ... S2

B. General procedure for the synthesis of oxazole derivatives S2

C. Characterization data .. S3

D. Reference .. S11

E. NMR Spectra .. S12
A. General methods

Melting points were measured using a melting point instrument and are uncorrected. 1H and 13C NMR spectra were recorded on a 400 MHz NMR spectrometer. IR spectra were obtained with an infrared spectrometer on either potassium bromide pellets or liquid films between two potassium bromide pellets. GC–MS data were obtained using electron ionization. HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). TLC was performed using commercially available 100–400 mesh silica gel plates (GF254). Unless otherwise noted, purchased chemicals were used without further purification.

B. Typical experimental procedure for the synthesis of 3

A mixture of amidine hydrochloride 1 (0.25 mmol), toluene derivatives 2 (1 mL), Cs$_2$CO$_3$ (159 mg, 2 equiv), 70% TBHP (96 mg, 3 equiv) in a test tube (10 mL) equipped with a magnetic stirring bar. The mixture was stirred at 100 °C for 24 h. After the reaction was completed, 10 mL ethyl acetate (3×10 mL) was added into the tube. The combined organic layers were washed with brine to neutral, dried over anhydrous MgSO$_4$, and concentrated in vacuum. Purification of the residue on a preparative TLC afforded 3 with white solid.
C. Characterization data

2,4,6-Triphenyl-1,3,5-triazine (3aa) \[^{[1]}\]
Yield: 0.056 g (73%), white solid, m.p. 170-172 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta = 8.78\) (d, 6H, \(J = 8.0\) Hz), 7.63-7.56 (m, 9H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta = 171.7, 136.3, 132.5, 129.0, 128.6\); IR (KBr, cm\(^{-1}\)): \(\nu = 3063, 1556, 1522, 789, 737, 674\). HRMS (ESI) calc. C\(_{21}\)H\(_{16}\)N\(_3\) [M+H]\(^+\): 310.1339, found: 310.1339.

2-(4-Methoxyphenyl)-4,6-diphenyl-1,3,5-triazine (3ab) \[^{[2]}\]
Yield: 0.065 g (77%), white solid, m.p. 157-159 °C; \(^1\)H NMR (400 Hz, CDCl\(_3\), ppm): \(\delta = 8.59-8.52\) (dd, \(J = 8.0\) Hz, \(J = 8.0\) Hz, 6H), 7.43-7.40 (m, 6H), 6.86 (d, \(J = 8.0\) Hz, 2H), 3.70 (s, 3H); \(^1^3\)C NMR (100 Hz, CDCl\(_3\), ppm): \(\delta = 171.30, 171.11, 163.31, 136.48, 132.30, 130.87, 128.94, 128.79, 128.55, 113.91, 55.40\); IR (KBr, cm\(^{-1}\)): \(\nu = 3077, 2913, 2840, 1603, 1558, 1521, 1377, 1251, 1178, 1034, 855, 801, 784, 734, 675\); HRMS (ESI) calc. C\(_{22}\)H\(_{18}\)N\(_3\)O [M+H]\(^+\): 340.1444, found: 340.1442.

2-(4-(tert-Butyl)phenyl)-4,6-diphenyl-1,3,5-triazine (3ac)
Yield: 0.068 g (74%), white solid, m.p. 164-166 °C; \(^1\)H NMR (400 Hz, CDCl\(_3\), ppm): \(\delta = 8.86-8.76\) (m, 6H), 7.69-7.64 (m, 8H), 1.51 (s, 9H); \(^1^3\)C NMR (100 Hz, CDCl\(_3\), ppm): \(\delta = 171.7, 170.8, 136.3, 132.5, 129.0, 128.6\); IR (KBr, cm\(^{-1}\)): \(\nu = 3063, 1556, 1522, 789, 737, 674\). HRMS (ESI) calc. C\(_{21}\)H\(_{16}\)N\(_3\)O [M+H]\(^+\): 310.1339, found: 310.1339.
ppm): δ = 171.67, 171.53, 156.10, 136.46, 132.42, 129.02, 128.94, 128.62, 125.64, 35.15, 31.32; IR (KBr, cm⁻¹): ν = 3067, 2916, 2844, 1612, 1578, 1521, 1369, 1249, 1178, 1024, 843, 811, 776, 685; HRMS (ESI) calc. C_{25}H_{23}N_{3}Na [M+Na]^+:
388.1784, found: 388.1781.

2-(4-Fluorophenyl)-4,6-diphenyl-1,3,5-triazine (3ad) [3]
Yield: 0.056 g (69%), white solid; m.p. 247-248 °C; ¹H NMR (400 Hz, CDCl₃, ppm):
δ = 8.80-8.74 (m, 6H), 7.58-7.55 (m, 6H), 7.23-7.21 (m, 2H); ¹³C NMR (100 Hz, CDCl₃, ppm):
δ = 171.66, 170.67, 165.83 (d, J = 252 Hz), 136.15, 132.56, 132.44 (d, J = 2 Hz), 131.30 (d, J = 9 Hz), 128.96, 128.64, 115.69 (d, J = 22 Hz); IR (KBr, cm⁻¹):
ν = 3036, 1584, 1525, 1366, 832, 763, 681; HRMS (ESI) calc. C_{21}H_{15}FN_{3} [M+H]^+:
328.1250, found: 328.1243.

2-(4-Chlorophenyl)-4,6-diphenyl-1,3,5-triazine (3ae) [1]
Yield: 0.057 g (66%), white solid, m.p. 200-201 °C; ¹H NMR (400 MHz, CDCl₃, ppm):
δ = 8.74-8.62 (m, 6H), 7.58-7.47 (m, 8H); ¹³C NMR (100 MHz, CDCl₃, ppm):
δ = 171.6, 170.6, 136.8, 136.3, 136.1, 132.6, 132.5, 130.3, 129.0, 128.6; IR (KBr, cm⁻¹):
ν = 3044, 1585, 1520, 1365, 830, 760, 683; HRMS (ESI) calc. C_{21}H_{15}ClN_{3} [M+H]^+:
344.0949, found: 344.0953.

2-(4-Trifluoromethyl)-4,6-diphenyl-1,3,5-triazine (3cf) [2]
Yield: 0.057 g (66%), white solid, m.p. 200-201 °C; ¹H NMR (400 MHz, CDCl₃, ppm):
δ = 8.76-8.64 (m, 6H), 7.56-7.46 (m, 8H); ¹³C NMR (100 MHz, CDCl₃, ppm):
δ = 171.6, 170.6, 136.8, 136.3, 136.1, 132.6, 132.5, 130.3, 129.0, 128.6; IR (KBr, cm⁻¹):
ν = 3044, 1585, 1520, 1365, 830, 760, 683; HRMS (ESI) calc. C_{21}H_{15}FN_{3} [M+H]^+:
344.0949, found: 344.0953.
2,4-Diphenyl-6-(4-(trifluoromethyl)phenyl)-1,3,5-triazine (3af) \[^{[3]}\]
Yield: 0.057 g (61%), white solid, m.p. 186-187 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta = 8.72-8.58\) (m, 6H), 7.73-7.50 (m, 8H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta = 171.7, 170.2, 139.5, 135.8, 133.8, 132.7, 129.2, 129.0, 128.6, 125.4, 124.0\) (CF\(_3\)); IR (KBr, cm\(^{-1}\)): \(\nu = 3037, 1521, 1367, 1323, 1122, 1067, 835, 771, 686\); HRMS (ESI) calc. C\(_{22}\)H\(_{15}\)F\(_3\)N\(_3\)\([M+H]\)^+: 378.1213, found: 378.1220.

![2,4-Diphenyl-6-(4-(trifluoromethyl)phenyl)-1,3,5-triazine (3af)](image)

2-(4-Nitrophenyl)-4,6-diphenyl-1,3,5-triazine (3ag) \[^{[1]}\]
Yield: 0.048 g (54%), yellow solid, m.p. 216-218 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta = 8.92\) (d, 2H, \(J = 8.0\) Hz), 8.76 (d, 4H, \(J = 8.0\) Hz), 8.40 (d, 2H, \(J = 8.0\) Hz), 7.61-7.57 (m, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta = 172.1, 169.8, 150.4, 142.0, 135.7, 133.0, 129.8, 129.1, 128.8, 123.7\); IR (KBr, cm\(^{-1}\)): \(\nu = 3037, 1525, 1360, 834, 782, 742, 683\); HRMS (ESI) calc. C\(_{21}\)H\(_{14}\)N\(_4\)O\(_2\)Na \([M+Na]\)^+: 377.1009, found: 377.1011.

![2-(4-Nitrophenyl)-4,6-diphenyl-1,3,5-triazine (3ag)](image)

2-(3-Nitrophenyl)-4,6-diphenyl-1,3,5-triazine (3ah) \[^{[2]}\]
Yield: 0.056 g (63%), yellow solid, m.p. 200-202 °C; \(^1\)H NMR (400 Hz, CDCl\(_3\), ppm): \(\delta = 9.50\) (s, 1H), 9.03 (d, \(J = 8.0\) Hz, 1H), 8.73 (d, \(J = 8.0\) Hz, 4H), 8.43 (d, \(J = 8.0\) Hz, 1H) 7.75-7.57 (m, 7H); \(^{13}\)C NMR (100 Hz, CDCl\(_3\), ppm): \(\delta = 171.95, 169.52, 148.75, 138.09, 135.55, 134.48, 132.93, 129.60, 129.04, 128.72, 126.73, 123.75\); IR (KBr, cm\(^{-1}\)): \(\nu = 3045, 1587, 1533, 1359, 833, 784, 746, 681\); HRMS (ESI) calc. C\(_{21}\)H\(_{14}\)N\(_4\)NaO\(_2\) \([M+Na]\)^+: 377.1009, found: 377.1009.

![2-(3-Nitrophenyl)-4,6-diphenyl-1,3,5-triazine (3ah)](image)
2-(5-Bromo-2-methoxyphenyl)-4,6-diphenyl-1,3,5-triazine (3ai)
Yield: 0.059 g (57%), white solid, m.p. 176-179 °C; \(^1\)H NMR (400 Hz, CDCl\(_3\), ppm): \(\delta = 8.66 \text{ (d, } J = 8.0 \text{ Hz, 4H)}, 8.22 \text{ (s, 1H)}, 7.51-7.47 \text{ (m, 7H)}, 6.86 \text{ (d, } J = 8.0 \text{ Hz, 1H)}, 3.86 \text{ (s, 3H)}; \(^{13}\)C NMR (100 Hz, CDCl\(_3\), ppm): \(\delta = 171.96, 171.53, 158.39, 136.16, 135.03, 134.72, 132.60, 129.11, 128.68, 128.51, 114.68, 113.04, 56.61; IR (KBr, cm\(^{-1}\)): \(\nu = 3034, 2928, 2835, 1607, 1561, 1531, 1380, 1252, 1179, 1033, 857, 783, 734, 677; HRMS (ESI) calc. C\(_{22}\)H\(_{16}\)BrN\(_3\)NaO \([\text{M+Na}]^+\): 440.0369, found: 440.0364.

2,4-Diphenyl-6-(o-tolyl)-1,3,5-triazine (3aj) \[^{[3]}\]
Yield: 0.034 g (42%), white solid, m.p. 121-123 °C; \(^1\)H NMR (400 Hz, CDCl\(_3\), ppm): \(\delta = 8.70-8.69 \text{ (m, 4H)}, 8.32 \text{ (d, } J = 8.0 \text{ Hz, 1H}), 7.52-7.31 \text{ (m, 9H)}, 3.03 \text{ (s, 3H)}; \(^{13}\)C NMR (100 Hz, CDCl\(_3\), ppm): \(\delta = 174.51, 171.32, 139.24, 136.37, 136.13, 132.54, 131.99, 131.41, 131.08, 129.07, 128.71, 126.13, 22.59; IR (KBr, cm\(^{-1}\)): \(\nu = 3068, 2917, 2845, 1613, 1579, 1523, 1368, 1179, 1024, 845, 815, 778, 689; HRMS (ESI) calc. C\(_{22}\)H\(_{17}\)N\(_3\)Na \([\text{M+Na}]^+\): 346.1315, found: 346.1313.

2-(2-Methoxyphenyl)-4,6-diphenyl-1,3,5-triazine (3ak)
Yield: 0.040 g (47%), white solid, m.p. 134-136 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): \(\delta = 8.71 \text{ (d, } J = 8.0 \text{ Hz), 8.14 \text{ (d, } J = 8.0 \text{ Hz, 1H}), 7.52-7.44 \text{ (m, 7H)}, 7.10 \text{ (t, } 1H, J = 8.0 \text{ Hz), 7.04 \text{ (d, } 1H, J = 8.0 \text{ Hz), 3.92 \text{ (s, 3H)}; \(^{13}\)C NMR (100 MHz, CDCl\(_3\), ppm): \(\delta = 173.3, 171.5, 159.3, 136.5, 132.6, 132.5, 132.4, 129.1, 128.7, 126.9, 120.8, 112.9, 56.4; IR (KBr, cm\(^{-1}\)): \(\nu = 3063, 2931, 2825, 1592, 1516, 1448, 1360, 1249, 1165, 1021, 846, 748, 695, 634; HRMS (ESI) calc. C\(_{22}\)H\(_{18}\)NO \([\text{M+H}]^+\): 340.1444,
2-(2-Chlorophenyl)-4,6-diphenyl-1,3,5-triazine (3al) [3]
Yield: 0.035 g (41%), white solid, m.p. 133-135 °C; ¹H NMR (400 Hz, CDCl₃, ppm): δ = 8.72 (d, J = 8.0 Hz, 4H), 8.15 (d, J = 8.0 Hz, 1H), 7.59-7.43 (m, 9H); ¹³C NMR (100 Hz, CDCl₃, ppm): δ = 172.80, 171.65, 136.00, 135.92, 133.85, 132.70, 132.43, 131.64, 131.27, 129.15, 128.71, 126.87; IR (KBr, cm⁻¹): ν = 3056, 1588, 1519, 1363, 834, 756, 689; HRMS (ESI) calc. C₂₁H₁₄ClN₃Na [M+Na]⁺: 366.0768, found: 366.0776.

2-(2-Nitrophenyl)-4,6-diphenyl-1,3,5-triazine (3am) [2]
Yield: 0.029 g (33%), yellow solid, m.p. 144-146 °C; ¹H NMR (400 Hz, CDCl₃, ppm): δ = 8.50 (d, J = 8.0 Hz, 4H), 8.24 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H) 7.56-7.37 (m, 8H); ¹³C NMR (100 Hz, CDCl₃, ppm): δ = 171.82, 170.11, 150.79, 135.49, 132.95, 131.90, 131.71, 131.69, 130.63, 129.16, 128.78, 123.81; IR (KBr, cm⁻¹): ν = 3062, 1591, 1520, 1447, 1368, 844, 776, 691; HRMS (ESI) calc. C₂₁H₁₄N₄O₂Na [M+Na]⁺: 377.1009, found: 377.1005.

2-(Naphthalen-1-yl)-4,6-diphenyl-1,3,5-triazine (3an)
Yield: 0.040 g (45%), white solid, m.p. 258-260 °C; ¹H NMR (400 Hz, CDCl₃, ppm): δ = 9.14 (d, J = 8.0 Hz, 1H), 8.75-8.74 (m, 4H), 8.50 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.59-7.50 (m, 9H); ¹³C NMR (100 Hz, CDCl₃, ppm): δ = 174.40, 171.54, 136.27, 134.33, 134.03, 132.66, 132.38, 131.47, 130.84,
129.14, 128.77, 127.30, 126.24, 126.13, 125.21; IR (KBr, cm\(^{-1}\)): \(\nu = 3067, 1567, 1541, 834, 799, 737, 686\); HRMS (ESI) calc. \(C_{25}H_{17}N_3Na\ [M+Na]^+\): 382.1315, found: 382.1315.

![Image](image_url)

2,4-Diphenyl-6-(thiophen-2-yl)-1,3,5-triazine (3ao)

Yield: 0.020 g (25%), white solid, m.p. 255-257 °C; \(^1\)H NMR (400 Hz, CDCl\(_3\), ppm): \(\delta = 8.71\) (d, \(J = 8.0\) Hz, 4H), 8.36-8.35 (m, 1H), 7.63-7.53 (m, 7H), 7.24-7.21 (m, 1H); \(^1^3\)C NMR (100 Hz, CDCl\(_3\), ppm): \(\delta = 171.56, 168.11, 142.20, 135.97, 132.55, 132.13, 131.49, 128.96, 128.61, 128.46\); IR (KBr, cm\(^{-1}\)): \(\nu = 3045, 1526, 1391, 1121, 832, 789, 766, 685\); HRMS (ESI) calc. \(C_{19}H_{13}N_3\ [M+Na]^+\): 338.0722, found: 338.0731.

![Image](image_url)

2-Phenyl-4,6-di-p-tolyl-1,3,5-triazine (3ba)

Yield: 0.061 g (72%), white solid, m.p. 215-217 °C; \(^1\)H NMR (400 Hz, CDCl\(_3\), ppm): \(\delta = 8.79\) (d, \(J = 8.0\) Hz, 2H), 8.68 (d, \(J = 8.0\) Hz, 4H), 7.63-7.58 (m, 3H), 7.39 (d, \(J = 8.0\) Hz, 4H), 2.50 (s, 6H); \(^1^3\)C NMR (100 Hz, CDCl\(_3\), ppm): \(\delta = 171.52, 171.41, 142.96, 136.51, 133.69, 132.28, 129.36, 128.96, 128.93, 128.56, 21.72\); IR (KBr, cm\(^{-1}\)): \(\nu = 3066, 2911, 2832, 1611, 1574, 1512, 1370, 1023, 845, 812, 779, 685\); HRMS (ESI) calc. \(C_{23}H_{20}N_3\ [M+H]^+\): 338.1652, found: 338.1656.

![Image](image_url)

2,4-Bis(4-methoxyphenyl)-6-phenyl-1,3,5-triazine (3ca)

Yield: 0.063 g (68%), white solid, m.p. 209-211 °C; \(^1\)H NMR (400 Hz, CDCl\(_3\), ppm): \(\delta = 8.72-8.66\) (m, 6H), 7.57-7.51 (m, 3H), 7.02 (d, \(J = 8.0\) Hz, 4H), 3.87 (s, 6H); \(^1^3\)C NMR (100 Hz, CDCl\(_3\), ppm): \(\delta = 171.10, 170.91, 163.21, 136.63, 132.16, 130.78, \)
128.99, 128.85, 128.51, 113.88, 55.42; IR (KBr, cm$^{-1}$): $\nu =$ 3064, 2928, 2812, 1594, 1516, 1438, 1359, 1244, 1162, 1024, 844, 749, 693; HRMS (ESI) calc. C$_{23}$H$_{20}$N$_3$O$_2$ [M+H]$^+$: 370.1550, found: 370.1548.

![2,4-Bis(4-chlorophenyl)-6-phenyl-1,3,5-triazine (3da)](image)

Yield: 0.057 g (61%), white solid, m.p. 239-241 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): $\delta =$ 8.78-8.65 (m, 6H), 7.58-7.51 (m, 7H); 13C NMR (100 MHz, CDCl$_3$, ppm): $\delta =$ 171.7, 170.7, 138.8, 136.1, 134.8, 132.6, 130.3, 129.0, 128.9, 128.7; IR (KBr, cm$^{-1}$): $\nu =$ 3059, 1583, 1515, 1368, 829, 768, 682; HRMS (ESI) calc. C$_{21}$H$_{14}$Cl$_2$N$_3$ [M+H]$^+$: 378.0559, found: 378.0562.

![2-Phenyl-4,6-bis(4-(trifluoromethyl)phenyl)-1,3,5-triazine (3ea)](image)

Yield: 0.061 g (54%), white solid, m.p. 169-171 °C; 1H NMR (400 MHz, CDCl$_3$, ppm): $\delta =$ 8.47-8.41 (m, 6H), 7.61-7.39 (m, 7H); 13C NMR (100 MHz, CDCl$_3$, ppm): $\delta =$ 171.7, 170.1, 138.7, 135.1, 133.9, 133.0, 128.9, 128.8, 128.6, 125.4, 124.0 (CF$_3$); IR (KBr, cm$^{-1}$): $\nu =$ 3053, 2923, 1588, 1521, 1366, 1316, 1121, 1063, 824, 778, 689; HRMS (ESI) calc. C$_{23}$H$_{14}$Cl$_2$N$_3$ [M+H]$^+$: 446.1086, found: 446.1089.

![2,4-Bis(3-methoxyphenyl)-6-phenyl-1,3,5-triazine (3fa)](image)

Yield: 0.057 g (62%), white solid, m.p. 186-188 °C; 1H NMR (400 MHz, d$_6$-DMSO, ppm): $\delta =$ 8.73 (d, 2H, $J =$ 8.0 Hz), 8.31 (d, 2H, $J =$ 8.0 Hz), 8.22 (s, 2H), 7.74-7.65 (m, 3H), 7.58 (t, 2H, $J =$ 8.0 Hz), 7.29 (d, 2H, $J =$ 8.0 Hz), 3.93 (s, 6H); 13C NMR...
(100 MHz, d^6-DMSO, ppm): δ = 171.0, 170.8, 159.7, 136.8, 133.1, 130.1, 129.0, 128.7, 118.8, 113.5, 99.5, 55.3; IR (KBr, cm^-1): ν = 3064, 3010, 2949, 2830, 1594, 1520, 1453, 1357, 1236, 1132, 1032, 770, 683, 639; HRMS (ESI) calc. C_{23}H_{20}N_{3}O_{2} [M+H]^+: 370.1550, found: 370.1554.

![Image of 2-Phenyl-4,6-di-o-tolyl-1,3,5-triazine (3ga)]

2-Phenyl-4,6-di-o-tolyl-1,3,5-triazine (3ga)
Yield: 0.048 g (57%), white solid, m.p. 175-176 °C; ^1H NMR (400 Hz, CDCl\textsubscript{3}, ppm): δ = 8.68 (d, J = 8.0 Hz, 2H), 8.28 (d, J = 8.0 Hz, 2H), 7.56-7.50 (m, 3H), 7.39-7.32 (m, 6H), 2.82 (s, 6H); ^13C NMR (100 Hz, CDCl\textsubscript{3}, ppm): δ = 174.28, 170.88, 139.11, 136.38, 136.18, 132.56, 131.93, 131.36, 131.00, 129.07, 128.76, 126.12, 22.47; IR (KBr, cm^-1): ν = 3034, 2956, 2812, 1604, 1579, 1512, 1366, 1180, 1022, 847, 813, 772, 689; HRMS (ESI) calc. C\textsubscript{23}H\textsubscript{20}N\textsubscript{3} [M+H]^+: 338.1652, found: 338.1652.

![Image of 2,4-Bis(2-chlorophenyl)-6-phenyl-1,3,5-triazine (3ha)]

2,4-Bis(2-chlorophenyl)-6-phenyl-1,3,5-triazine (3ha)
Yield: 0.046 g (49%), white solid, m.p. 195-197 °C; ^1H NMR (400 Hz, CDCl\textsubscript{3}, ppm): δ = 8.71 (d, J = 8.0 Hz, 2H), 8.14-8.10 (m, 2H), 7.59-7.51 (m, 5H), 7.44-7.40 (m, 4H); ^13C NMR (100 Hz, CDCl\textsubscript{3}, ppm): δ = 172.78, 171.58, 135.70, 135.64, 133.77, 132.95, 132.55, 131.79, 131.23, 129.39, 128.80, 126.96; IR (KBr, cm^-1): ν = 3034, 2956, 2812, 1604, 1579, 1512, 1366, 1180, 1022, 847, 813, 772, 689; HRMS (ESI) calc. C\textsubscript{21}H\textsubscript{13}Cl\textsubscript{2}N\textsubscript{3}Na [M+Na]^+: 400.0379, found: 400.0370.

![Image of 2,4-Dicyclopropyl-6-phenyl-1,3,5-triazine (3ia)]

2,4-Dicyclopropyl-6-phenyl-1,3,5-triazine (3ia)
Yield: 0.020 g (34%), white solid, m.p. 126-127 °C; ^1H NMR (400 Hz, CDCl\textsubscript{3}, ppm): δ = 8.45 (d, J = 8.0 Hz, 2H), 7.51-7.42 (m, 3H), 2.18-2.11 (m, 2H), 1.30-1.26 (m, 4H),
1.11-1.07 (m, 4H); 13C NMR (100 Hz, CDCl$_3$, ppm): δ = 179.73, 169.80, 136.11, 132.03, 128.67, 128.42, 17.95, 11.37; IR (KBr, cm$^{-1}$): ν = 3066, 2934, 2812, 1579, 1514, 1367, 1172, 1031, 849, 779, 684; HRMS (ESI) calc. C$_{13}$H$_{16}$N$_3$ [M+H]$^+$: 238.1339, found: 238.1337.

D. Reference

E. NMR Spectra

1H NMR of 3aa
13C NMR of 3aa

1H NMR of 3ab
13C NMR of 3ab

1H NMR of 3ac
\[^{13}C \text{NMR of 3ac} \]

\[^1H \text{NMR of 3ad} \]
13C NMR of 3ad

1H NMR of 3ae
13C NMR of 3ae

1H NMR of 3af
13C NMR of 3ag

1H NMR of 3ah
13C NMR of 3ah

1H NMR of 3ai
13C NMR of 3ai

1H NMR of 3aj
13C NMR of 3aj

1H NMR of 3ak
13C NMR of 3ak

1H NMR of 3al
13C NMR of 3al

1H NMR of 3am
13C NMR of 3am

1H NMR of 3an
13C NMR of 3an

1H NMR of 3ao
13C NMR of 3ao

1H NMR of 3ba
13C NMR of 3ba

1H NMR of 3ca
C NMR of 3ca

H NMR of 3da
13C NMR of 3da

^{1}H NMR of 3ea
\[\text{13C NMR of 3ea} \]

\[\text{1H NMR of 3fa} \]
13C NMR of 3fa

1H NMR of 3ga
13C NMR of 3ga

1H NMR of 3ha
13C NMR of 3ia