Structure-Based Design of 3-Carboxy-Substituted 1,2,3,4-Tetrahydroquinolines as Inhibitors of Myeloid Cell Leukemia-1 (Mcl-1)

L. Chen, a P. T. Wilder, b,c B. Drennen, a M. Tran, d B. Roth, b,c K. Chesko, a P. Shapiro a,c and S. Fletcher a,c*

a Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA
b Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
c University of Maryland Greenebaum Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA
d PharmD Program, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA

Supporting Information

Chemistry...Page 2
Fluorescence Polarization Competition Assays...Page 7
15N-Mcl-1 NMR Experiments...Page 7
Cell Assays...Page 8
References..Page 8
NMR Spectra...Page 10
HPLC Spectra..Page 50
Chemistry

All reactions were performed in oven-dried glassware under an inert (N₂) atmosphere, unless otherwise stated. Anhydrous solvents were used as supplied without further purification. ¹H and ¹³C NMR spectra were recorded on a Varian 400 MHz NMR spectrometer at 25 °C. Chemical shifts are reported in parts per million (ppm) and are referenced to residual non-deuterated solvent peak (CHCl₃: δ_H 7.26, δ_C 77.2; DMSO: δ_H 2.50, δ_C 39.5). Mass spectra were recorded on a Bruker AmaZon X mass spectrometer using atmospheric pressure chemical ionization (APCI). All final molecules were confirmed to be >90% pure by HPLC prior to biological testing using a Waters 1525 analytical/preparative HPLC equipped with a Atlantis T3 C18 reversed phase column according to one of the following gradients: (I) 100% solvent (A) to 100% solvent (B) over 10 min at 1 ml min⁻¹; (II) 50% solvent (A) to 100% solvent (B) over 22 min at 1 ml min⁻¹; or (III) 100% solvent (B) isocratic over 22 min at 1 ml min⁻¹, where solvent (A) is H₂O with 0.1% TFA and solvent (B) is CH₃CN-H₂O, 9:1 with 0.1% TFA.

General procedure A: Sulfonamide synthesis. Compound ±-5 was dissolved in anhydrous chloroform (0.1 M), followed by adding corresponding sulfonyl chloride (2 eq), DIPEA (2.5 eq), DMAP (0.1 eq). Reaction was refluxed overnight under N₂ atmosphere. TLC indicated the reaction was complete. The volatiles were evaporated and the residual was reconstituted in EtOAc and washed with 1M HCl. The organic layer was collected and dried over Na₂SO₄, filtered, concentrated and purified by flash column chromatography over silica gel using an eluent of Hex/EtOAc 3:1 to give compounds ±-7a-e.

General procedure B: Ester hydrolysis. Compound ±-7a-e, ±-5, ±-9 or ±-10 was dissolved in a mixed solvent of THF/MeOH/H₂O 3:1:1 (0.1 M). LiOH·H₂O (5 eq) was added to the reaction, which was then stirred overnight at room temperature. TLC indicated the reaction was complete. The volatiles were evaporated, and the residue was partitioned between Et₂O and 1M NaOH. The aqueous layer was collected and acidified with 1M HCl, then partitioned with CH₂Cl₂. The CH₂Cl₂ layer was collected, dried over Na₂SO₄, filtered, and concentrated to yield products ±-8a-e, ±-6, ±-2 or ±-11.

Methyl quinoline-3-carboxylate¹ (4). Quinoline-3-carboxylic acid 3 (2.50 g, 14.4 mmol, 1 eq) was suspended in MeOH (72 mL), and SOCl₂ (2.09 mL, 28.8 mmol, 2 eq) was added slowly at 0 °C. The reaction was then heated at a gentle reflux overnight. TLC indicated the reaction was complete. The volatiles were evaporated and the residue was partitioned between DCM and saturated NaHCO₃ solution. The organic layer was collected and dried over Na₂SO₄, filtered and concentrated to give compound 4 as a yellow solid (2.64 g, 98%): ¹H NMR (CDCl₃, 400 MHz) δ 9.46 (1H, s, Ar), 8.88 (1H, s, Ar), 8.20 (1H, d, J = 8.8Hz, Ar), 7.95 (1H, d, J = 8.8Hz, Ar), 7.85 (1H, t, J = 8.0Hz, Ar), 7.64 (1H, t, J = 7.2Hz, Ar), 4.02 (3H, s, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 160.9, 145.2, 144.9, 133.9, 127.0, 124.6, 124.3, 122.6, 121.9, 118.1, 47.7.

±-Methyl 1,2,3,4-tetrahydroquinoline-3-carboxylate² (±-5). Borane-pyridine complex (8M; 3.50 mL, 27.6 mmol, 2 eq) was added to a solution of 4 (2.58 g, 13.8 mmol, 1 eq) in glacial acetic acid (100 mL), and the reaction was stirred at room temperature overnight. TLC indicated the reaction was complete. The reaction mixture was concentrated to dryness, and then partitioned between EtOAc and saturated NaHCO₃ solution. The organic layer was collected and dried over Na₂SO₄, filtered, concentrated and
purified by flash column chromatography over silica gel using an eluent of Hex:EtOAc 1:1 to give compound ±-5 as a pale solid (2.32 g, 88%): ¹H NMR (CDCl₃, 400 MHz) δ 7.02-6.98 (2H, m, Ar), 6.66 (1H, t, J = 7.2Hz, Ar), 6.53 (1H, d, J = 8.0Hz, Ar), 3.97 (1H, s, NH), 3.74 (3H, s, CH₃), 3.58-3.54 (1H, m, CH₂CH₂N), 3.39-3.34 (1H, m, CH₂CH₂N), 3.03-3.01 (2H, m, CH and CH₂CH₂CH), 2.96-2.92 (1H, m, CH₂CH₂CH); ¹³C NMR (CDCl₃, 100 MHz) δ 169.5, 139.1, 124.8, 122.4, 114.7, 112.7, 109.6, 47.2, 38.8, 33.6, 24.9.

±-1,2,3,4-Tetrahydroquinoline-3-carboxylic acid (±-6). Compound ±-5 was saponified on a scale of 0.32 mmol according to general procedure B to yield compound ±-6 as a light brown solid (25 mg, 43%): ¹H NMR (DMSO-d₆, 400 MHz) δ 12.36 (1H, s, COOH), 6.85-6.78 (2H, m, Ar), 6.41-6.37 (2H, m, Ar), 5.69 (1H, s, NH), 3.35-3.32 (1H, m, CH₂CH₂N), 3.12 (1H, m, CH₂CH₂NH), 2.78-2.66 (3H, m, CH and CH₂CH₂CH₂NH); ¹³C NMR (CDCl₃, 100 MHz) δ 143.7, 129.8, 127.4, 119.7, 118.2, 114.8, 43.5, 38.4, 29.5; t_R = 1.3 min (96.3%, I).

±-Methyl 1-(phenylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7a). Compound ±-5 was coupled to benzenesulfonyl chloride according general procedure A on a scale of 0.79 mmol to yield compound ±-7a as a light yellow solid (242 mg, 93%): ¹H NMR (CDCl₃, 400 MHz) δ 7.76 (1H, d, J = 8.0Hz, Ar), 7.62 (2H, d, J = 7.6Hz, Ar), 7.54 (1H, t, J = 7.2Hz, Ar), 7.42 (2H, t, J = 7.6Hz, Ar), 7.21 (1H, t, J = 7.6Hz, Ar), 7.10 (1H, t, J = 6.8Hz, Ar), 7.04 (1H, d, J = 7.2Hz, Ar), 4.47-4.42 (1H, m, CH₂CH₂N), 3.69 (3H, s, CH₃), 3.52-3.45 (1H, m, CH₂CH₂N), 2.68 (2H, m, CH and CH₂CH₂CH), 2.56-2.51 (1H, m, CH₂CH₂CH); ¹³C NMR (CDCl₃, 100 MHz) δ 167.9, 134.5, 131.2, 128.3, 124.5, 124.4, 123.8, 122.2, 122.1, 120.7, 120.0, 47.5, 42.6, 32.9, 24.4.

±-Methyl 1-(4-fluorophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7b). Compound ±-5 was coupled to 4-fluorobenzenesulfonyl chloride according to general procedure A on a scale of 0.53 mmol to yield compound ±-7b as a light brown solid (195 mg, 90%): ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (1H, d, J = 7.6Hz, Ar), 7.56 (2H, d, J = 8.8Hz, Ar), 7.48 (2H, d, J = 8.4Hz, Ar), 7.22 (1H, t, J = 7.2Hz, Ar), 7.13 (1H, t, J = 6.8Hz, Ar), 7.07 (1H, d, J = 7.6Hz, Ar), 4.45-4.41 (1H, m, CH₂CH₂N), 3.71 (3H, s, CH₃), 3.54-3.48 (1H, m, CH₂CH₂N), 2.77-2.69 (2H, m, CH and CH₂CH₂CH), 2.63-2.56 (1H, m, CH₂CH₂CH); ¹³C NMR (CDCl₃, 100 MHz) δ 167.8, 133.6, 130.9, 127.7, 124.6, 123.9, 123.8, 123.4, 122.3, 121.0, 119.9, 47.5, 42.7, 33.2, 24.4.

±-Methyl 1-(4-bromophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7c). Compound ±-5 was coupled to 4-bromobenzenesulfonyl chloride according to general procedure A on a scale of 1.05 mmol to yield compound ±-7c as a light yellow solid (307 mg, 84%): ¹H NMR (CDCl₃, 400 MHz) δ 7.76 (1H, d, J = 7.6Hz, Ar), 7.65-7.62 (2H, m, Ar), 7.23 (1H, t, J = 7.2Hz, Ar), 7.14-7.06 (4H, m, Ar), 4.45-4.41 (1H, m, CH₂CH₂N), 3.71 (3H, s, CH₃), 3.54-3.47 (1H, m, CH₂CH₂N), 2.75-2.64 (2H, m, CH and CH₂CH₂CH), 2.60-2.53 (1H, m, CH₂CH₂CH); ¹³C NMR (CDCl₃, 100 MHz) δ 167.8, 161.8, 159.2, 131.0, 130.6, 125.0, 124.9, 124.5, 123.9, 122.3, 120.9, 120.1, 111.8, 111.6, 47.5, 42.6, 33.1, 24.4.

±-Methyl 1-(1,1′-biphenyl-4-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7d). Compound ±-5 was coupled to 4-biphenylsulfonyl chloride according to general procedure A on a scale of 0.52 mmol to yield compound ±-7d as a pale solid (203 mg, 96%): ¹H NMR (CDCl₃, 400 MHz) δ 7.82 (1H, d, J = 8.0Hz, Ar), 7.70 (2H, d, J = 8.4Hz, Ar), 7.64 (2H, d, J = 8.8Hz, Ar), 7.58 (2H, d, J = 7.2Hz, Ar), 7.48-7.39 (3H, m, Ar), 7.24 (1H, t, J = 7.6Hz, Ar), 7.13 (1H, t, J = 8.0Hz, Ar), 7.07 (1H, d, J = 7.6Hz, Ar), 4.53-4.48 (1H, m, CH₂CH₂N), 3.72 (3H, s, CH₃), 3.56-3.49 (1H, m, CH₂CH₂N), 2.75 (2H, d, J = 8.4Hz, CH₂CH), 2.67-2.62 (1H, m,
CH); 13C NMR (CDCl$_3$, 100 MHz) δ 167.9, 141.1, 134.2, 133.1, 131.3, 124.5, 124.3, 123.8, 122.9, 122.8, 122.5, 122.2, 120.8, 120.0, 47.5, 42.6, 33.1, 24.5.

\pm-Methyl 1-(naphthalen-2-ylsulfonfyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (\pm-7e). Compound \pm-5 was coupled to 2-naphthylsulfonfyl chloride according to general procedure A on a scale of 0.54 mmol to yield compound \pm-7e as an off-white solid (197 mg, 95%): 1H NMR (CDCl$_3$, 400MHz) δ 8.29 (1H, s, Ar), 7.90-7.83 (4H, m, Ar), 7.24 (1H, t, J = 8.4Hz, Ar), 7.12 (1H, t, J = 7.2Hz, Ar), 7.03 (1H, d, J = 8.0Hz, Ar), 4.47-4.42 (1H, m, CH$_a$CH$_b$N), 3.58 (3H, s, CH$_3$), 3.48-3.42 (1H, m, CH$_a$CH$_b$N), 2.59 (2H, d, J = 8.0Hz, CH$_2$CH); 13C NMR (CDCl$_3$, 100MHz) δ 167.9, 131.6, 131.3, 130.1, 127.3, 124.7, 124.2, 123.8, 123.2, 122.9, 122.2, 120.7, 119.9, 117.4, 47.4, 42.7, 33.1, 24.4.

\pm-1-(Phenylsulfonfyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (\pm-8a). Compound \pm-7a was saponified according to general procedure B on a scale of 0.35 mmol to yield compound \pm-8a as a pale solid (108 mg, 98%): 1H NMR (CDCl$_3$, 400MHz) δ 7.79 (1H, d, J = 8.8Hz, Ar), 7.64 (2H, d, J = 7.2Hz, Ar), 7.57 (1H, t, J = 7.6Hz, Ar), 7.44 (2H, t, J = 8.0Hz, Ar), 7.24 (1H, t, J = 8.0Hz, Ar), 7.13 (1H, t, J = 7.2Hz, Ar), 7.06 (1H, d, J = 6.8Hz, Ar), 4.48-4.43 (1H, m, CH$_a$CH$_b$N), 3.56-3.50 (1H, m, CH$_a$CH$_b$N), 2.75-2.69 (2H, m, CH and CH$_2$CH); 13C NMR (CDCl$_3$, 100MHz) δ 173.4, 134.4, 131.2, 128.4, 124.5, 124.2, 123.8, 123.2, 120.9, 120.2, 42.2, 32.9, 24.1; MS (APCI+) m/z Calcd (M$^+$): 317.0, Found: 317.0 (M$^+$); t_R = 11.7 min (100%, II).

\pm-1-((4-Bromophenyl)sulfonfyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (\pm-8b). Compound \pm-7b was saponified according to general procedure B on a scale of 0.26 mmol to yield compound \pm-8b as a pale solid (97 mg, 95%): 1H NMR (DMSO-d$_6$, 400MHz) δ 12.76 (1H, s, COOH), 7.74 (2H, d, J = 8.4Hz, Ar), 7.54-7.50 (3H, m, Ar), 7.19-7.05 (3H, m, Ar), 4.20-4.16 (1H, m, CH$_a$CH$_b$N), 3.64-3.58 (1H, m, CH$_a$CH$_b$N), 2.67-2.53 (3H, m, CH and CH$_2$CH); 13C NMR (DMSO-d$_6$, 100MHz) δ 173.7, 138.3, 135.9, 133.1, 130.0, 129.5, 129.1, 127.9, 127.1, 125.6, 123.6, 47.5, 38.1, 29.1; MS (APCI+) m/z Calcd (M$^+$): 396.9, Found: 396.9 (M$^+$); t_R = 15.1 min (100%, II).

\pm-1-((4-Fluorophenyl)sulfonfyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (\pm-8c). Compound \pm-7c was saponified according to general procedure B on a scale of 0.26 mmol to yield compound \pm-8c as a pale solid (84 mg, 97%): 1H NMR (DMSO-d$_6$, 400MHz) δ 12.75 (1H, s, COOH), 7.88 (2H, d, J = 8.8Hz, Ar), 7.43 (4H, d, J = 7.2Hz, Ar), 7.62 (1H, d, J = 8.4Hz, Ar), 7.52-7.42 (3H, m, Ar), 7.24-7.09 (3H, m, Ar), 4.26-4.21 (1H, m, CH$_a$CH$_b$N), 3.65-3.59 (1H, m, CH$_3$CH$_2$N), 2.70-2.59 (3H, m, CH and CH$_2$CH); 13C NMR (DMSO-d$_6$, 100MHz) δ 173.7, 145.2, 138.4, 137.9, 136.2, 130.0, 129.6, 129.3, 129.2, 128.0, 127.8, 127.5, 127.1.
125.4, 123.5, 47.5, 38.0, 29.2; MS (APCI+) m/z Calcd (M⁺): 393.1, Found: 394.0 (M+H⁺); tᵣ = 17.7 min (98.4%, II).

±-1-(Naphthalen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8e). Compound ±-7e was saponified according to general procedure B on a scale of 0.31 mmol to yield compound ±-8e as a pale solid (113 mg, 98%): ¹H NMR (DMSO-ᴅ₆, 400 MHz) δ 12.73 (1H, s, COOH), 8.48 (1H, s, Ar), 8.15 (1H, d, J = 8.4Hz, Ar), 8.08-8.02 (2H, m, Ar), 7.56 (1H, d, J = 8.4Hz, Ar), 7.21 (1H, t, J = 7.2Hz, Ar), 7.14-7.07 (2H, m, Ar), 4.34-4.30 (1H, m, CHᵃCHᵇN), 3.74-3.68 (1H, m, CHᵃCHᵇN), 2.67-2.59 (3H, m, CH and CH₂CH); ¹³C NMR (DMSO-ᴅ₆, 100 MHz) δ 137.7, 136.2, 134.8, 132.1, 130.1, 129.9, 129.8, 129.7, 129.3, 128.7, 128.3, 127.1, 125.3, 123.4, 122.2, 47.6, 38.1, 29.2; MS (APCI+) m/z Calcd (M⁺): 367.0, Found: 368.0 (M+H⁺); tᵣ = 15.5 min (100%, II).

±-Methyl 1-((4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-9). ±-7c (170 mg, 0.49 mmol, 1 eq) was dissolved in 4 mL DMSO (0.1 M), followed by the addition of 4-chloro-3,5-dimethylphenol (92 mg, 0.59 mmol, 1.2 eq) and K₂CO₃ (101 mg, 0.74 mmol, 1.5 eq). The reaction was stirred at 100 °C for 48 h. TLC indicated the reaction was complete. The reaction mixture was cooled and then partitioned between EtOAc (80 mL) and H₂O (40 mL). The organic layer was collected, washed repeatedly with H₂O (5 x 40 mL), dried over Na₂SO₄, filtered, concentrated and purified by flash column chromatography over silica gel using an eluent of Hex/EtOAc 6:1 to give compound ±-9 as a light brown oil (170 mg, 73%): ¹H NMR (CDCl₃, 400 MHz) δ 7.77 (1H, d, J = 8.0Hz, Ar), 7.57 (2H, d, J = 8.4Hz, Ar), 7.21 (1H, t, J = 6.4Hz, Ar), 7.12-7.05 (2H, m, Ar), 6.93 (2H, d, J = 8.4Hz, Ar), 6.77 (2H, s, Ar), 4.47-4.42 (1H, m, CHᵃCHᵇN), 3.71 (3H, s, CH₃), 3.51-3.45 (1H, m, CHᵃCHᵇN), 2.78-2.69 (2H, d, J = 8.0Hz, CH₂CH), 2.65-2.60 (1H, m, CH), 2.36 (6H, s, 2xCH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 167.9, 156.9, 147.8, 133.5, 131.3, 128.2, 125.9, 124.5, 123.7, 122.2, 120.7, 119.9, 115.3, 112.8, 47.5, 42.6, 33.0, 24.5, 16.1; MS (APCI+) m/z Calcd (M⁺): 485.1, Found: 486.0 (M+H⁺); tᵣ = 11.9 min (97.3%, III).

±-1-((4-(4-Chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-2). Compound ±-9 was saponified according to general procedure B on a scale of 0.30 mmol to yield compound ±-2 as an off-white solid (140 mg, 99%): ¹H NMR (CDCl₃, 400 MHz) δ 12.74 (1H, s, COOH), 7.64 (2H, d, J = 8.8Hz, Ar), 7.57 (1H, d, J = 8.4Hz, Ar), 7.22-7.17 (2H, m, Ar), 7.00 (2H, s, Ar), 4.23-4.19 (1H, m, CHᵃCHᵇN), 3.64-3.58 (1H, m, CHᵃCHᵇN), 2.33 (6H, s, 2xCH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 173.8, 161.5, 152.9, 138.3, 136.2, 133.1, 129.9, 129.8, 129.3, 128.7, 125.4, 124.7, 123.6, 120.7, 118.3, 47.4, 37.9, 29.2, 20.7; MS (APCI+) m/z Calcd (M⁺): 471.1, Found: 472.0 (M+H⁺); tᵣ = 9.7 min (96.5%, III).

±-Methyl 1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-10). Compound ±-6 (153 mg, 0.80 mmol, 1 eq) was dissolved in 8 mL 1,2-dichloroethane (0.1 M), followed by 3-(4-chloro-3,5-dimethylphenoxy)propanal (170 mg, 0.80 mmol, 1 eq), and NaBH(OAc)₃ (340 mg, 1.60 mmol, 2 eq). The reaction was stirred at 35 °C overnight. TLC indicated the reaction was complete. Saturated NaHCO₃ solution was added to the mixture to quench the reaction. The reaction mixture was partitioned between DCM and H₂O, and organic layer was collected, dried over Na₂SO₄, filtered, concentrated and purified by flash column chromatography over silica gel using an eluent of Hex/EtOAc 7:3 to yield compound ±-10 as a light yellow solid (135 mg, 44%): ¹H NMR (CDCl₃, 400 MHz) δ 7.08-6.99
(2H, m, Ar), 6.66-6.59 (4H, m, Ar), 3.98 (2H, t, J = 5.6 Hz, O-CH$_2$), 3.71 (3H, s, CH$_3$), 3.54-3.38 (4H, m, CH$_2$N and NCH$_2$CH$_2$), 3.01 (2H, d, J = 6.8 Hz, CH$_2$CH), 2.94-2.93 (1H, m, CH), 2.35 (6H, s, 2xCH$_3$), 2.06-2.03 (2H, m, CH$_2$CH$_2$CH$_2$); 13C NMR (DMSO-d$_6$, 100 MHz) δ 173.9, 156.6, 144.4, 137.1, 129.4, 127.5, 120.4, 116.2, 114.5, 110.9, 65.5, 51.9, 50.7, 48.2, 38.2, 30.6, 29.7, 26.4, 20.9.

±-1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-11). Compound (±-10) was saponified according to general procedure B on a scale of 0.13 mmol to give compound ±-11 as a pale brown solid (43 mg, 90%): 1H NMR (CDCl$_3$, 400 MHz) δ 7.07-7.00 (2H, m, Ar), 6.71-6.65 (4H, m, Ar), 3.98 (2H, t, J = 5.6 Hz, O-CH$_2$), 3.54-3.45 (4H, m, CH$_2$N and NCH$_2$CH$_2$), 3.05-2.98 (3H, m, CH$_2$CH and CH), 2.34 (6H, s, 2xCH$_3$), 2.08-2.05 (2H, m, CH$_2$CH$_2$CH$_2$); 13C NMR (CDCl$_3$, 100 MHz) δ 179.1, 156.6, 144.4, 137.1, 129.5, 127.5, 120.1, 116.4, 114.5, 111.0, 65.5, 50.5, 48.3, 38.2, 30.3, 26.3, 20.9; MS (APCI+) m/z Calcd (M$^+$): 373.1, Found: 372.3 (M+H$^+$); t$_R$ = 8.6 min (97.6%, III).

±-Acetoxymethyl 1-((4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-12). Compound ±-2 (100 mg, 0.20 mmol, 1 eq) was dissolved in DMF (2 mL), followed by bromomethyl acetate (20 µL, 0.20 mmol, 1 eq) and K$_2$CO$_3$ (59 mg, 0.40 mmol, 2 eq). The reaction mixture was stirred at room temperature overnight. TLC indicated the reaction was complete, which was then partitioned between EtOAc (50 mL) and H$_2$O (50 mL). The organic layer was collected, washed repeatedly with H$_2$O (4 × 20 mL), then dried over Na$_2$SO$_4$ filtered, concentrated and purified by flash column chromatography over silica gel using an eluent of Hex/EtOAc 1:1 to give compound ±-12 as a white powder (103 mg, 95%): 1H NMR (CDCl$_3$, 400 MHz) δ 7.74 (1H, d, J = 8.0 Hz, Ar), 7.57 (2H, d, J = 8.4 Hz, Ar), 7.22 (1H, t, J = 8.0 Hz, Ar), 7.13-7.06 (2H, m, Ar), 6.93 (2H, d, J = 8.4 Hz, Ar), 6.78 (2H, s, Ar), 5.75 (2H, s, OCH$_2$O), 4.42-4.37 (1H, m, CH$_2$CH$_2$N), 3.57-3.51 (1H, m, CH$_2$CH$_2$N), 2.78-2.66 (3H, m, CH$_2$CH$_2$CH$_2$N), 2.63 (6H, s, 2xCH$_3$), 2.12 (3H, s, CH$_3$); 13C NMR (CDCl$_3$, 100 MHz) δ 171.1, 169.4, 161.8, 152.5, 138.3, 136.0, 132.8, 130.8, 129.3, 129.1, 128.1, 127.1, 125.5, 124.8, 120.1, 117.5, 46.9, 37.9, 28.9, 20.9, 20.7; MS (APCI+) m/z Calcd (M$^+$): 543.1, Found: 544.0 (M+H$^+$); t$_R$ = 10.7 min (100%, III).
Biology

General. All chemical reagents were ACS grade or higher unless otherwise indicated. All buffers were passed through Chelex-100 (Bio-Rad, Hercules, CA) to remove trace metals. The D$_2$O, DMSO-d$_6$, 15NH$_4$Cl, and 13C-labeled glucose were purchased from Cambridge Isotope Laboratories, Inc. (Andover, MA).

Protein Production. A His6-MBP tagged recombinant human Mcl-1 residues 172 to 327 was produced in E. coli in either LB or minimal media supplemented with 15NH$_4$Cl to produce unlabeled or 15N-labeled Mcl-1. The tagged protein was initially purified from the crude cell lysate by IMAC chromatography (GE Healthcare Life Sciences), and after dialysis to remove the imidazole the affinity tag was cleaved using PreScission Protease (GE Healthcare Life Sciences). A Sephacryl S-200 size exclusion column was used as a final purification step before the protein was concentrated with a 10,000 MWCO centrifugal filter concentrator (Millipore). The protein purity was shown to be >98% by Coomassie Brilliant Blue (Bio-Rad) stained SDS-PAGE gel and the final concentration was determined using the Bradford protein assay (Bio-Rad) with BSA standards (Pierce).

FITC-Bak BH3 Peptide. A 6-aminohexanoic acid linker was conjugated to the N-terminus of the Bak-BH3 peptide (GQVGRQLAIIGDDINR), capped with fluorescein (on the amino group of the linker), and the peptide was amidated on the C-terminus to give FITC-Ahx-GQVGRQLAIIGDDINR-CONH$_2$, hereafter referred to as “FITC-Bak” (synthesized by Neo BioScience in >95% purity).

Fluorescence Polarization Competition Assay. Fluorescence polarization experiments were conducted using a BMG PHERAstar FS multimode microplate reader equipped with two PMTs for simultaneous measurements of the perpendicular and parallel fluorescence emission. The assays were performed in black polypropylene 384-well microplate (Costar) with a final volume of 20 µL. Initially the affinity (K_d) of the FITC-Bak peptide was determined by titrating Mcl-1$^{172-327}$ into 10 nM FITC-Bak peptide in 20 mM HEPES, pH 6.8, 50 mM NaCl, 3 mM DTT, 0.01% Triton X-100 and 5% DMSO at room temperature while monitoring the perpendicular and parallel fluorescence emission with a 485 nm excitation and 520 nm emission filters. The fluorescence polarization competition assay (FPCA) was performed using 100 nM Mcl-1$^{172-327}$ in the same buffer (thus, 15 nM FITC-Bak) with varying concentrations of either unlabeled peptide or THQ-based Mcl-1 inhibitor. Regression analysis was carried out using Origin (OriginLab, Northampton, MA) to fit the data to the Hill equation (1) to determine the initial binding affinity (K_d) and the IC$_{50}$ in the FPCA. For the fluorescence polarization competition titrations, an equation derived by Nikolovska-Coleska et al. was used to calculate the K_i from the IC$_{50}$ data. The affinity of FITC-Bak for Mcl-1$^{172-327}$ was determined to be 33.8 ± 0.50 nM in the assay conditions used.

15N-Mcl-1 Nuclear Magnetic Resonance Spectroscopy. NMR spectra was collected at 25 ºC with a Bruker AVANCE 800 NMR spectrometer (800.27 MHz for protons) equipped with pulsed-field gradients, four frequency channels, and triple resonance, z-axis gradient cryogenic probes. A one-second relaxation delay was used, and quadrature detection in the indirect dimensions was obtained with states-TPPI phase cycling; initial delays in the indirect dimensions were set to give zero- and first-order phase corrections of 90º and −180º, respectively. Data were processed using the processing program nmrPipe on Linux workstations. All proton chemical shifts are reported with respect to the H$_2$O or HDO...
signal, taken to be 4.658 ppm relative to external TSP (0.0 ppm) at 37 °C. The 15N chemical shifts were indirectly referenced using the zero-point frequency at 37 °C of 0.10132905 for 15N-1H, as previously described.8,9

Uniformly 15N-labeled Mcl-1 was used to collect two-dimensional 1H,15N-fast HSQC (heteronuclear single quantum coherence) spectra of Mcl-1 with and without ±-2 to detect changes in the backbone 15N and 1H resonances of Mcl-1 due to the direct interaction with the compound.10 The NMR samples contained 131 µM 15N-labeled Mcl-1, (182 µM ±-2), 20 mM HEPES, pH 6.8, 50 mM NaCl, 3 mM DTT, 20% D\textsubscript{2}O, and 5% DMSO-d\textsubscript{6}.

CellTiter-Blue® viability assay. A375 cells were plated at 5,000 cells/well seeding density in a 96 well black walled plate (Corning). Cells were cultured in 100 µL DMEM (Gibco) plus 10% HIFBS and PenStrep overnight. Using a separate plate, serial dilutions were made of each compound in DMEM. 10 µL of each serial dilution was transferred into the experimental plate so that the final compound concentrations were 4.69, 9.38, 18.75, 37.5, 75, 150, or 300 µM and 1% DMSO solvent. Untreated control cells also received DMSO vehicle at 1% final concentration. Cells were cultured with and without test compounds for 48 h and then 20 µL of CellTiter-Blue® reagent (Promega) was added to each well and to control wells containing media only to account for background. Cells were then incubated for 2 h and fluorescence was read using Molecular Devices Spectra Max M5 (560Ex/590Em). Results were recorded as percent viability determined by dividing the experimental values by the untreated controls and subtracting the background from cell-free wells.

References

(5) Marion, D.; Driscoll, P. C.; Kay, L. E.; Wingfield, P. T.; Bax, A.; Gronenborn, A. M.; Clore, G. M. Overcoming the Overlap Problem in the Assignment of 1H NMR Spectra of Larger Proteins by Use of Three-Dimensional Heteronuclear 1H-15N Hartmann-Hahn-Multiple Quantum Coherence and

1H and 13C NMR Spectra

Methyl quinoline-3-carboxylate (4).
Methyl quinoline-3-carboxylate (4).
Methyl 1,2,3,4-tetrahydroquinoline-3-carboxylate (±-5).
Methyl 1,2,3,4-tetrahydroquinoline-3-carboxylate (±-5).
1,2,3,4-Tetrahydroquinoline-3-carboxylic acid (±-6).
1,2,3,4-Tetrahydroquinoline-3-carboxylic acid (±-6).
Methyl 1-(phenylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±7a).
Methyl 1-(phenylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7a).
Methyl 1-((4-bromophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7b).
Methyl 1-((4-bromophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (\pm-7b).
Methyl 1-((4-fluorophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7c).
Methyl 1-(4-fluorophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7c).
Methyl 1-(1,1'-biphenyl-4-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7d).
Methyl 1-(1,1'-biphenyl)-4-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7d).
Methyl 1-(naphthalen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7e).
Methyl 1-(naphthalen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-7e).
1-(Phenylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8a).
1-(Phenylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8a).
1-((4-Bromophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (+8b).
1-((4-Bromophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8b).
1-((4-Fluorophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8c).
1-((4-Fluorophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8c).
1-[(1,1'-Biphenyl)-4-ylsulfonyl]-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8d).
1-\((1,1'-\text{Biphenyl})\)-4-ylsulfonyl]-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8d).
1-(Naphthalen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±8e).
1-(Naphthalen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8e).
Methyl 1-((4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-9).
Methyl 1-((4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-9).
1-((4-(4-Chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-2).
1-{(4-(4-Chloro-3,5-dimethylphenoxy)phenyl)sulfonyl}-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-2).
Methyl 1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-10).
Methyl 1-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±10).
1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-11).

ppm

0 2 4 6 8 10 12

42
1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-11).
Acetoxymethyl 1-((4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-12).
Acetoxymethyl 1-((4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-12).
HPLC Spectra

1,2,3,4-Tetrahydroquinoline-3-carboxylic acid (±-6).
1-(Phenylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid(±-8a).
1-((4-Bromophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8b).
1-((4-Fluorophenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8c).
1-((1,1'-Biphenyl)-4-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8d).
1-(Naphthalen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-8e).
Methyl 1-((4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-9).
1-((4-Chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-2).
1-(3-(4-Chloro-3,5-dimethylphenoxy)propyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (±-11).

<table>
<thead>
<tr>
<th>RT</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.436</td>
<td>111060</td>
<td>1.04</td>
</tr>
<tr>
<td>2</td>
<td>3.677</td>
<td>81294</td>
<td>0.76</td>
</tr>
<tr>
<td>3</td>
<td>4.705</td>
<td>61485</td>
<td>0.58</td>
</tr>
<tr>
<td>4</td>
<td>8.560</td>
<td>10427155</td>
<td>97.62</td>
</tr>
</tbody>
</table>

Reported by User: System
Report Method: University of Maryland
Report Method ID: 1270
Page: 1 of 1

Mcl-1

Project Name: Mcl-1
Date Printed: 10/19/2015
6:09:40 PM US/Eastern
Acetoxymethyl 1-((4-(4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl)-1,2,3,4-tetrahydroquinoline-3-carboxylate (±-12).