Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Direct Synthesis of C-Glycosides from Unprotected 2-*N*-Acyl-Aldohexoses via Aldol Condensation-oxa-Michael Reactions with Unactivated Ketones

Sherida Johnson and Fujie Tanaka*

Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

1. Reaction of <i>N</i> -acetyl-D-mannosamine (1) with acetone	S2
2. Reaction of <i>N</i> -acetyl-D-glucosamine (5) with acetone	S4
3. Reaction of <i>N</i> -valeryl-D-glucosamine (7) with acetone	S6
4. Reaction of <i>N</i> -acetyl-D-galactosamine (9) with acetone	S 7
5. Reaction of <i>N</i> -acetyl-D-glucosamine (5) with methoxyacetone	S9
6. Allylation reaction of 2a	S10
7. Reaction of <i>N</i> -acetyl-D-mannosamine (1) with methoxyacetone	S10
8. Reaction of 2a with sulfonyl hydrazide	S11
9. References	S11
NMR spectra	S12

General

For thin layer chromatography (TLC), Merck silica gel 60 F254 aluminum sheets were used. Flash column chromatography was performed using Yamazen silica gel flash column chromatography. ¹H NMR and ¹³C NMR were recorded on a Bruker Avance 400. Proton chemical shifts are given in relative to the residual proton signals of the deuterated solvent in CD₃OD (δ 3.31 ppm). Carbon chemical shifts were internally referenced to the deuterated solvent signals in CD₃OD (δ 49.0 ppm). High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap ESI ion trap mass spectrometer. Optical rotations were measured on a Jasco P2200 polarimeter.

1. Reaction of *N*-acetyl-D-mannosamine (1) with acetone

Reaction using L-proline and N,N-diisopropylethylamine as catalyst (Table 1, entry 6)

To a mixture of L-proline (24.0 mg, 0.209 mmol) in DMSO (1.0 mL), acetone (615 μ L, 8.36 mmol) and *N*,*N*-diisopropylethylamine (36.0 μ L, 0.209 mmol) were added at room temperature (25 °C), and the mixture was stirred for 5 min. To this mixture, *N*-acetyl-D-mannosamine monohydrate (100.0 mg, 0.418 mmol) was added and the resulting mixture was stirred at the same temperature for 96 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 92:8 to 84:16 over 10 min and 84:16 for 25 min) to give **2a** (72.8 mg, 62%).

Reaction using L-proline and N,N-diisopropylethylamine as catalyst (two times size reaction of Table 1, entry 6)

To a mixture of L-proline (48.0 mg, 0.418 mmol) in DMSO (1.0 mL), acetone (1.23 mL, 16.7 mmol) and *N*,*N*-diisopropylethylamine (73.0 μ L, 0.418 mmol) were added at room temperature (25 °C), and the mixture was stirred for 5 min. To this mixture, *N*-acetyl-D-mannosamine monohydrate (200.0 mg, 0.836 mmol) was added and the resulting mixture was stirred at the same temperature for 96 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 92:8 to 84:16 over 10 min and 84:16 for 25 min) to give **2a** (131.0 mg, 60%). Compound **2a** was crystallized from acetone.

Reaction using L-proline, *N*,*N*-diisopropylethylamine, and *cis*-4hydroxycyclohexanecarboxylic acid as catalyst (Table 1, entry 12)

A mixture of L-proline (24.0 mg, 0.209 mmol), DMSO (1.0 mL), acetone (615 μ L, 8.36 mmol), *N*,*N*-diisopropylethylamine (81.0 μ L, 0.627 mmol), cis-4-hydroxycyclohexanecarboxylic acid (60.0 mg, 0.418 mmol), and *N*-acetyl-D-mannosamine monohydrate (100.0 mg, 0.418 mmol) were stirred at room temperature (25 °C) for 48 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 90:10 to 83:17 over 10 min and 83:17 for 25 min) to give **2a** (51.0 mg, 44%).

Reaction using pyrrolidine and boric acid as catalyst (Table 1, entry 18)

A mixture of pyrrolidine (17.0 μ L, 0.209 mmol), H₃BO₃ (26.0 mg, 0.416 mmol), DMSO (1.0 mL), and acetone (615 μ L, 8.36 mmol) was stirred at room temperature (25 °C) for 5 min. To this mixture, *N*-acetyl-D-mannosamine monohydrate (100.0 mg, 0.418 mmol) was added and the resulting mixture was stirred at the same temperature for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 92:8 to 83:17 over 10 min and 83:17 for 25 min) to give **2b** (62.6 mg, 53%).

Transformation of 2a to 2b under the pyrrolidine-boric acid conditions

To a solution of **2a** (30.0 mg, 0.115 mmol) in DMSO (100 μ L) was added H₃BO₃ (7.0 mg, 0.115 mmol) followed by pyrrolidine (5.0 μ l, 0.57 mmol) at room temperature (25 °C), and the resulting mixture was stirred at the same temperature. Initially, the mixture was a clear colorless solution. After 1 h, the reaction mixture turned to pale yellow and the TLC analysis

showed that **2a** was consumed and **2b** was formed. The mixture was purified silica gel flash column chromatography (CH₂Cl₂/MeOH = 92:8 to 83:17 over 10 min and 83:17 for 25 min) to give **2b** (18.0 mg, 60%).

When compound **2a** was treated with pyrrolidine alone or H_3BO_3 alone in DMSO at room temperature (25 °C) under the same conditions, no changes of **2a** was detected after 1 h.

Compound 2a

N-((2R,3S,4R,5S)-5-((R)-1,2-dihydroxyethyl)-4-hydroxy-2-(2-oxopropyl)tetrahydrofuran-3-yl)acetamide

 $R_f = 0.32 (CH_2Cl_2/MeOH = 5:1).$

Colorless crystals (crystallized from acetone); mp 157 °C. $[\alpha]_D^{25}$ +59.3 (c 1.04, MeOH). ¹H NMR (400MHz, CD₃OD): δ 4.26 (dd, J = 4.0 Hz, 3.2 Hz, 1H), 4.23 (ddd, J = 9.6 Hz, 6.4 Hz, 5.2 Hz, 1H), 4.17 (dd, J = 9.6 Hz, 4.0 Hz, 1H), 3.94 (dd, J = 8.4 Hz, 3.2 Hz, 1H), 3.88 (ddd, J = 8.4 Hz, 6.0 Hz, 3.2 Hz, 1H), 3.73 (dd, J = 11.6 Hz, 3.2 Hz, 1H), 3.56 (dd, J = 11.6 Hz, 6.0 Hz, 1H), 2.704 (d, J = 6.4 Hz, 1H), 2.702 (d, J = 5.2 Hz, 1H), 2.17 (s, 3H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 209.8, 173.6, 82.1, 77.3, 72.2, 71.4, 64.9, 59.0, 48.4, 30.6, 22.6. HRMS (ESI): calcd for C₁₁H₂₀NO₆ ([M + H]⁺) 262.1285, found 262.1273.

X-ray crystal structure of 2a (CCDC 1422504)

Compound 2b^{S1, S2}

N-((2*S*,3*S*,4*R*,5*S*,6*R*)-4,5-dihydroxy-6-(hydroxymethyl)-2-(2-oxopropyl)tetrahydro-2*H*-pyran-3-yl)acetamide

HO O NHAc HO, ŌΗ

$R_{f} = 0.27 (CH_{2}Cl_{2}/MeOH = 5:1).$

Colorless gum. $[\alpha]_D^{25}$ –29.0 (c 1.00, MeOH). Lit. $[\alpha]_D$ –28.5 (c 0.45, H₂O).^{S2 1}H NMR (400MHz, CD₃OD): δ 4.30 (dd, J = 4.4 Hz, 1.2 Hz, 1H), 4.03 (ddd, J = 7.2 Hz, 5.2 Hz, 1.2 Hz, 1H), 3.78 (d, J = 3.6 Hz, 2H), 3.69 (dd, J = 9.6 Hz, 4.4 Hz, 1H), 3.50 (t, J = 9.6 Hz, 1H), 3.22 (dt, J = 9.6 Hz, 3.6 Hz, 1H), 2.65 (dd, J = 17.2 Hz, 7.2 Hz, 1H), 2.54 (dd, J = 17.2 Hz, 5.2 Hz, 1H), 2.14 (s, 3H), 2.05 (s, 3H). ¹³C NMR (400 MHz, CD₃OD): δ 208.6, 174.5, 82.3, 75.1, 74.8, 68.3, 62.2, 54.1, 45.9, 30.4, 22.6. HRMS (ESI): calcd for C₁₁H₂₀NO₆ ([M + H]⁺) 262.1285, found 262.1275.

2. Reaction of N-acetyl-D-glucosamine (5) with acetone

Reaction using L-proline and *N*,*N*-diisopropylethylamine as catalyst (Table 2, entry 4) A mixture of D-proline (78.0 mg, 0.68 mmol), DMSO (3.0 mL), acetone (1.99 mL, 27.1 mmol), and *N*,*N*-diisopropylethylamine (118 μ L, 0.68 mmol) was stirred at room temperature (25 °C) for 5 min. To this mixture, *N*-acetyl-D-glucosamine (300 mg, 1.36 mmol) was added and the resulting mixture was stirred at the same temperature for 96 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 90:10 to 83:17 over 10 min and 83:17 for 25 min) to give a mixture of **6a** and **6b** (7.7 mg, 2%).

Because the reactions of *N*-acetyl-D-mannosamine (1) to give 2 (Table 1) were performed using *N*-acetyl-D-mannosamine monohydrate, the reaction of *N*-acetyl-D-glucosamine (5) described in Table 2, entry 4 was also performed with addition of H_2O (1 equiv to 5; H_2O was premixed with 5 prior to the addition to the reaction mixture). No improvement in the product formation in this reaction was observed.

Reaction using pyrrolidine and boric acid (1 equiv) as catalyst (Table 2, entry 6)

A mixture of pyrrolidine (111 μ L, 1.36 mmol), H₃BO₃ (168.0 mg, 2.71 mmol), DMSO (6.0 mL), acetone (3.99 mL, 54.3 mmol), and *N*-acetyl-D-glucosamine (600 mg, 2.71 mmol) was stirred at room temperature (25 °C) for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 86:14 to 78:22 over 10 min and 78:22 for 25 min) to give **6a** (156.0 mg, 22%, **6a-1/6a-2** = 1:3).

Reaction using pyrrolidine and boric acid (2 equiv) as catalyst (Table 2, entry 7)

A mixture of pyrrolidine (19.0 μ L, 0.23 mmol), H₃BO₃ (56.0 mg, 0.90 mmol), DMSO (1.0 mL), acetone (0.66 mL, 9.0 mmol), and *N*-acetyl-D-glucosamine (100 mg, 0.45 mmol) was stirred at room temperature (25 °C) for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 86:14 to 78:22 over 10 min and 78:22 for 25 min) to give **6b** (79.0 mg, 66%).

Compound 6a-1

N-((2R,3R,4R,5S)-5-((R)-1,2-dihydroxyethyl)-4-hydroxy-2-(2-oxopropyl)tetrahydrofuran-3-yl)acetamide

HO

 $R_{\rm f} = 0.30 (CH_2Cl_2/MeOH = 5:1).$

Colorless oil (**6a-1**:**6a-2** = 3:1). ¹H NMR (400MHz, CD₃OD) (**6a-1** extracted from **6a-1**:**6a-2** = 3:1): δ 4.15 (dd, *J* = 4.0 Hz, 2.0 Hz, 1H), 4.04 (dt, *J* = 8.0 Hz, 2.0 Hz, 1H), 3.92-3.87 (m, 2H), 3.76 (dd, *J* = 8.4 Hz, 4.0 Hz, 1H), 3.74 (dd, *J* = 3.2 Hz, 1.2 Hz, 1H), 3.58 (dd, *J* = 11.2 Hz, 5.6 Hz, 1H), 2.94 (dd, *J* = 16.8 Hz, 8.0 Hz, 1H), 2.84 (dd, *J* = 11.2 Hz, 5.6 Hz, 1H), 2.94 (dd, *J* = 16.8 Hz, 4.0 Hz, 1H), 2.84 (dd, *J* = 16.8 Hz, 4.8 Hz, 1H), 2.16 (s, 3H), 1.96 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 209.6, 173.2, 82.2, 80.5, 77.7, 71.2, 65.1, 64.1, 49.1, 30.5, 22.5. HRMS (ESI) (**6a-1**:**6a-2** = 3:1): calcd for C₁₁H₂₀NO₆ ([M + H]⁺) 262.1285, found 262.1275.

Compound 6a-2

N-((2*S*,3*R*,4*R*,5*S*)-5-((*R*)-1,2-dihydroxyethyl)-4-hydroxy-2-(2-oxopropyl)tetrahydrofuran-3-yl)acetamide

```
R_f = 0.24 (CH<sub>2</sub>Cl<sub>2</sub>/MeOH = 5:1).
```

Colorless oil (**6a-1**:**6a-2** = 1:1). ¹H NMR (400MHz, CD₃OD) (**6a-2** extracted from **6a-1**:**6a-2** = 1:1): δ 4.63 (ddd, J = 8.4 Hz, 5.6 Hz, 4.4 Hz, 1H), 4.32 (dd, J = 4.4 Hz, 1.2 Hz, 1H), 4.18 (dd, J = 3.6 Hz, 1.2 Hz, 1H), 3.94-3.89 (m, 2H), 3.75 (dd, J = 11.2 Hz, 3.0 Hz, 1H), 3.58 (dd, J = 11.2 Hz, 5.6 Hz, 1H), 2.73 (dd, J = 16.4 Hz, 8.4 Hz, 1H), 2.60 (dd, J = 16.4 Hz, 5.6 Hz, 1H), 2.16 (s, 3H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) (**6a-2** extracted from **6a-1**:**6a-2** = 1:1): δ 209.1, 173.2, 81.0, 77.3, 76.2, 71.1, 65.4, 60.6, 44.4, 30.4, 22.4. HRMS (ESI) (**6a-1**:**6a-2** = 1:1): calcd for C₁₁H₂₀NO₆ ([M + H]⁺) 262.1285, found 262.1291.

Compound 6b^{S1,S3}

N-((2*S*,3*R*,4*R*,5*S*,6*R*)-4,5-dihydroxy-6-(hydroxymethyl)-2-(2-oxopropyl)tetrahydro-2*H*-pyran-3-yl)acetamide

 $R_{f} = 0.22 (CH_{2}Cl_{2}/MeOH = 5:1).$

Colorless crystals (crystallized from CH₂Cl₂-MeOH); mp 141 °C. ¹H NMR (400MHz, CD₃OD): δ 3.80 (dd, J = 12.0 Hz, 2.4 Hz, 1H), 3.75 (ddd, J = 9.6 Hz, 8.0 Hz, 4.0 Hz, 1H),

3.63 (dd, J = 12.0 Hz, 5.6 Hz, 1H), 3.62 (t, J = 9.6 Hz, 1H), 3.40 (dd, J = 9.6 Hz, 8.4 Hz, 1H), 3.32 (dd, J = 9.6 Hz, 8.4 Hz, 1H), 3.22 (ddd, J = 9.6 Hz, 5.6 Hz, 2.4 Hz, 1H), 2.67 (dd, J = 16.4 Hz, 8.0 Hz, 1H), 2.60, (dd, J = 16.4 Hz, 8.0 Hz, 1H), 2.16, (s, 3H), 1.96 (s, 3H). ¹³C NMR (100 MHz, D₂O): δ 209.6, 173.8, 81.7, 77.1, 76.3, 72.2, 62.8, 56.7, 47.3, 30.6, 22.8. HRMS (ESI): calcd for C₁₁H₁₉NO₆Na ([M + Na]⁺) 284.1110, found 284.1105.

X-ray crystal structure of **6b** (CCDC 1422505)

3. Reaction of *N*-valeryl-D-glucosamine (7) with acetone

Reaction using D-proline and N,N-diisopropylethylamine as catalyst (Scheme 4)

To a mixture of D-proline (22.0 mg, 0.19 mmol) in DMSO (1.0 mL), acetone (558 μ L, 7.6 mmol) and *N*,*N*-diisopropylethylamine (33.0 μ L, 0.19 mmol) were added at room temperature (25 °C), and the mixture was stirred for 5 min. To this mixture, *N*-valeryl-D-glucosamine (100.0 mg, 0.38 mmol) was added and the resulting mixture was stirred at the same temperature for 96 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 90:10 to 83:17 over 10 min and 83:17 for 25 min) to give **8a** (13.8 mg, 12%).

Reaction using pyrrolidine and boric acid as catalyst (Scheme 4)

A mixture of pyrrolidine (16.0 μ L, 0.19 mmol), H₃BO₃ (23.0 mg, 0.38 mmol), DMSO (1.0 mL), and acetone (559 μ L, 7.6 mmol) was stirred at room temperature (25 °C) for 5 min. To this mixture, *N*-valeryl-D-glucosamine (100.0 mg, 0.38 mmol) was added and the resulting mixture was stirred at the same temperature for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 90:10 to 83:17 over 10 min and 83:17 for 25 min) to give **8b** (85.1 mg, 74%).

Compound 8a

 $R_f = 0.49 (CH_2Cl_2/MeOH = 5:1).$

Colorless gum. ¹H NMR (400MHz, CD₃OD): δ 4.64 (ddd, J = 8.0 Hz, 5.4 Hz, 4.4. Hz, 1H), 4.34 (dd, 4.4.Hz, 1.2 Hz, 1H), 4.16 (dd, J = 3.6 Hz, 1.2 Hz, 1H), 3.92 (dd, J = 8.4 Hz, 3.6 Hz, 1H), 3.88 (ddd, J = 8.4 Hz, 5.6 Hz, 3.2 Hz, 1H), 3.76 (dd, J = 11.2 Hz, 3.2 Hz, 1H), 3.58 (dd, J = 11.2 Hz, 5.6 Hz, 1H), 2.73 (dd, 1H, J = 16.4 Hz, 8.0 Hz, 1H), 2.59 (dd, J = 16.4 Hz, 5.4 Hz, 1H), 2.28-2.20 (m, 2H), 2.16 (s, 3H), 1.64-1.55 (m, 2H), 1.40-1.30 (m, 2H), 0.96-0.92 (m, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 209.0, 176.3, 81.0, 77.4, 76.2, 71.2, 65.5, 60.5, 44.5, 36.5, 30.4, 29.3, 23.4, 14.1. HRMS (ESI): calcd for C₁₄H₂₆NO₆ ([M + H]⁺) 304.1755, found 304.1760.

Compound 8b

 $R_f = 0.42 (CH_2Cl_2/MeOH = 5:1).$

Pale yellow solid. ¹H NMR (400MHz, CD₃OD): δ 3.80 (dd, J = 12.0 Hz, 2.4 Hz, 1H), 3.75 (ddd, J = 10.0 Hz, 8.4 Hz, 3.2 Hz, 1H), 3.63 (dd, J = 10.0 Hz, 9.6 Hz, 1H), 3.63 (dd, J = 12.0 Hz, 5.2 Hz, 1H), 3.40 (dd, J = 10.0 Hz, 8.4 Hz, 1H), 3.31 (dd, J = 10.0 Hz, 8.4 Hz, 1H), 3.22 (ddd, J = 9.6 Hz, 5.2 Hz, 2.4 Hz, 1H), 2.67 (dd, J = 16.4 Hz, 8.4 Hz, 1H), 2.57 (dd, J = 16.4 Hz, 3.2 Hz, 1H), 2.21 (dt, J = 2.4 Hz, 7.6 Hz, 2H), 2.16 (s, 3H), 1.63-1.55 (m, 2H), 1.40-1.31 (m, 2H), 0.93 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 209.5, 176.8, 81.7, 77.1, 76.3, 72.3, 62.9, 56.5, 47.3, 37.1, 30.7, 29.0, 23.4, 14.1. HRMS (ESI): calcd for C₁₄H₂₆NO₆ ([M + H]⁺) 304.1755, found 304.1756.

4. Reaction of N-acetyl-D-galactosamine (9) with acetone

Reaction using L-proline and N,N-diisopropylethylamine as catalyst in MeOH (Scheme 6)

A mixture of D-proline (26.0 mg, 0.23 mmol), MeOH (1.0 mL), acetone (660 μ L, 9.0 mmol), *N*,*N*-diisopropylethylamine (39.0 μ L, 0.23 mmol), and *N*-acetyl-D-galactosamine (100 mg, 0.45 mmol) was stirred at room temperature (25 °C) for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 91:9 to 84:16 over 10 min and 84:16 for 25 min) to give **10a** (103 mg, 88%, **10a-1:10a-2** = 1:1).

Reaction using D-proline and N,N-diisopropylethylamine as catalyst in DMSO

A mixture of D-proline (16.0 mg, 0.14 mmol), DMSO (1.0 mL), acetone (398 μ L, 5.4 mmol), diisopropylethylamine (24.0 μ L, 0.14 mmol), and *N*-acetyl-D-galactosamine (60.0 mg, 0.27 mmol) was stirred at room temperature (25 °C) for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 91:9 to 84:16 over 10 min and 84:16 for 25 min) to give **10a** (19.0 mg, 26%, **10a-1:10a-2** = 1.4:1).

Reaction using D-proline and N,N-diisopropylethylamine as catalyst in MeOH at 60 °C (Scheme 6)

A mixture of D-proline (26.0 mg, 0.23 mmol), MeOH (1.0 mL), acetone (0.66 mL, 9.0 mmol), *N*,*N*-diisopropylethylamine (39.0 μ L, 0.23 mmol), and *N*-acetyl-D-galactosamine (100 mg, 0.45 mmol) was stirred at 60 °C for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 91:9 to 84:16 over 10 min and 84:16 for 25 min) to give **10b** (38.0 mg, 32%).

Reaction using pyrrolidine and boric acid as catalyst at 25 $^{\circ}\mathrm{C}$

A mixture of pyrrolidine (19.0 μ L, 0.23 mmol), H₃BO₃ (28.0 mg, 0.45 mmol), DMSO (1.0 mL), acetone (0.66 mL, 9.0 mmol), and *N*-acetyl-D-galactosamine (100 mg, 0.45 mmol) was stirred at room temperature (25 °C) for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 91:9 to 84:16 over 10 min and 84:16 for 25 min) to give **10a-1** (17.0 mg, 15%) and **10a-2** (17.0 mg, 15%), **10b** (7.0 mg, 6%).

Compound 10a-1

HO. HO HO ŃHAc

 $R_{\rm f} = 0.29 \ (CH_2Cl_2/MeOH = 5:1).$

Colorless gum. $[\alpha]_D^{25}$ +7.1 (c 0.17, MeOH). ¹H NMR (400MHz, CD₃OD): δ 4.46 (ddd, J = 8.0 Hz, 5.2 Hz, 4.4 Hz, 1H), 4.21 (dd, J = 4.4 Hz, 2.0 Hz, 1H), 4.08 (dd, J = 3.6 Hz, 2.0 Hz, 1H), 3.75 (dd, J = 3.6 Hz, 2.4 Hz, 1H), 3.73 (ddd, J = 6.8 Hz, 5.6 Hz, 2.4 Hz, 1H), 3.60 (dd, J = 10.8 Hz, 5.6 Hz, 1H), 3.57 (dd, J = 10.8 Hz, 6.8 Hz, 1H), 2.71 (dd, J = 16.8 Hz, 8.0 Hz, 1H), 2.61 (dd, J = 16.8 Hz, 5.2 Hz, 1H), 2.16 (s, 3H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 209.0, 172.6, 86.4, 79.2, 77.1, 72.6, 64.4, 60.2, 44.2, 30.3, 22.7. HRMS (ESI): calcd for C₁₁H₂₀NO₆ ([M + H]⁺) 262.1285, found 262.1275.

Compound 10a-2

HO HO HO NHAC $R_f = 0.25 (CH_2Cl_2/MeOH = 5:1).$ Colorless gum. $[\alpha]_D^{25}$ –10.5 (c 0.38, MeOH). ¹H NMR (400MHz, CD₃OD): δ 4.19 (t, J = 7.2 Hz, 1H), 4.14 (ddd, J = 7.2 Hz, 6.8 Hz, 4.4 Hz, 1H), 4.09 (dd, J = 7.2 Hz, 6.8 Hz, 1H), 3.83 (dd, J = 7.2 Hz, 2.8 Hz, 1H), 3.65 (ddd, J = 6.8 Hz, 5.6 Hz, 2.8 Hz, 1H), 3.58 (d, J = 5.6 Hz, 1H), 3.58 (d, J = 6.8 Hz, 1H), 2.84 (dd, J = 16.8 Hz, 7.2 Hz, 1H), 2.79 (d, J = 16.8 Hz, 4.4 Hz, 1H), 2.17 (s, 3H), 1.96 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 209.9, 173.8, 83.8, 78.8, 76.6, 72.6, 64.4, 62.4, 48.6, 30.6, 22.7. HRMS (ESI): calcd for C₁₁H₂₀NO₆ ([M + H]⁺) 262.1285, found 262.1288.

Compound 10b^{S1}

 $R_f = 0.21 (CH_2Cl_2/MeOH = 5:1).$

Colorless solid. $[\alpha]_D^{25}$ +19.4 (c 0.73, MeOH). ¹H NMR (400MHz, CD₃OD): δ 3.91 (t, J = 10.4 Hz, 1H), 3.87 (dd, J = 3.2 Hz, 0.8 Hz, 1H), 3.70 (ddd, J = 10.4 Hz, 8.8 Hz, 3.2 Hz, 1H), 3.663 (d, J = 6.8 Hz, 1H), 3.661 (d, J = 5.6 Hz, 1H), 3.53 (dd, J = 10.4 Hz, 3.2 Hz, 1H), 3.45 (ddd, J = 6.8 Hz, 5.6 Hz, 0.8 Hz, 1H), 2.72 (dd, J = 16.6 Hz, 8.8 Hz, 1H), 2.62 (dd, J = 16.6 Hz, 3.2 Hz, 1H), 2.16 (s, 3H), 1.96 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 209.7, 174.1, 80.2, 76.7, 74.0, 70.0, 62.6, 53.2, 47.3, 30.7, 22.9. HRMS (ESI): calcd for C₁₁H₂₀NO₆ ([M + H]⁺) 262.1285, found 262.1289.

5. Reaction of N-acetyl-D-glucosamine (5) with methoxyacetone

Reaction of *N*-acetyl-D-glucosamine (5) with methoxyacetone using pyrrolidine and boric acid as catalyst (Scheme 7)

A mixture of H₃BO₃ (28.0 mg, 0.45 mmol) and *N*-acetyl-D-glucosamine (100 mg, 0.45 mmol) in DMSO (1.0 mL) was stirred at room temperature (25 °C) for 15 min. To the mixture, methoxyacetone (0.83 mL, 9.0 mmol) and pyrrolidine (19.0 μ L, 0.23 mmol) were added and the resulting mixture was stirred at the same temperature for 36 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 86:14 to 79:21 over 10 min and 79:21 for 25 min) to give **11** (86.0 mg, 66%, α -isomer: β -isomer =1:1).

Compound 11

HO OMe Ο ′NHĂc HO) OH

R_f = 0.32 (a 1:1 mixture of α- and β-isomers, CH₂Cl₂/MeOH = 5:1). Colorless gum. ¹H NMR (400MHz, CD₃OD) (α-isomer:β-isomer =1:1): δ 4.68-4.62 (m, 1H x 1/2), 4.34-4,31 (m, 1H x 1/2), 4.19-4.03 (m, 2H + 1H +1H x 1/2), 3.95-3.71 (m, 3H + 1H x 1/2), 3.61-3.55 (m, 1H), 3.38 (s, 3H), 2.92 (dd, J = 16.2 Hz, 8.4 Hz, 1H x 1/2), 2.77 (dd, J = 16.2 Hz, 4.4 Hz, 1H x 1/2), 2.72 (dd, J = 16.2 Hz, 8.4 Hz, 1H x 1/2), 2.77 (dd, J = 16.2 Hz, 5.4 Hz, 1H x 1/2), 1.98 (s, 3H x 1/2), 1.96 (s, 3H x 1/2). ¹³C NMR (100 MHz, CD₃OD) (αisomer:β-isomer =1:1): δ 208.5, 208.2, 173.2, 82.2, 81.0, 80.3, 78.7, 78.5, 77.6, 77.2, 76.1, 71.2, 71.1, 65.4, 65.1, 64.1, 60.6, 59.5, 44.7, 40.0, 22.5, 22.4. HRMS (ESI): calcd for $C_{12}H_{22}NO_7$ ([M + H]⁺) 292.1391, found 262.1394.

6. Allylation reaction of 2a

Allylation reaction of 2a with allyl bromide and indium (Scheme 8)

To a solution of **2a** (50.0 mg, 0.191 mmol) in DMF (4.0 mL) and water (0.5 mL) were added allyl bromide (165 μ L, 1.91 mmol) and In (22.0 mg, 0.191 mmol) at room temperature (25°C). The resulting mixture was stirred at the same temperature for 18 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 95:5 to 88:12 over 10 min and 88:12 for 25 min) to give **12** (100.3 mg, 88%).

Compound 12

Colorless gum. ¹H NMR (400MHz, CD₃OD): δ 5.95-5.81(m, 1H), 5.09-5.02 (m, 2H), 4.27-4.21 (m, 1H), 4.12-4.05 (m, 2H), 3.95-3.85 (m, 2H), 3.78-3.73 (m, 1H), 3.59 (dd, *J* = 11.4 Hz, 5.4 Hz, 1H), 2.35-2.19 (m, 2H), 2.00 (s, 3H), 1.74-1.61 (m, 2H), 1.19 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 173.5, 135.9, 135.7, 118.1, 118.0, 82.1, 82.0, 77.8, 77.6, 72.9, 72.8, 71.6, 71.44, 71.40, 65.10, 65.07, 60.0, 47.6, 45.9, 45.7, 27.5, 27.0, 22.6. HRMS (ESI): calcd for C₁₄H₂₆NO₆ ([M + H]⁺) 304.1755, found 304.1760.

7. Reaction of N-acetyl-D-mannosamine (1) with methoxyacetone

A mixture of L-proline (24.0 mg, 0.21 mmol), DMSO (1.0 mL), methoxyacetone (78 μ L, 8.4 mmol), *N*,*N*-diisopropylethylamine (36.0 μ L, 0.21 mmol), and *N*-acetyl-D-mannosamine monohydrate (100.0 mg, 0.42 mmol) was stirred at room temperature (25 °C) for 24 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 90:10 to 83:17 over 10 min and 83:17 for 25 min) to give compound **13** (11.0 mg, 8.8%).

Compound 13

 $R_f = 0.38 (CH_2Cl_2/MeOH = 5:1).$ Colorless gum. ¹H NMR (400MHz, CD₃OD): δ 4.32-4.18 (m, 3H), 4.14 (s, 2H), 3.94 (dd, J = 8.0 Hz, 3.2 Hz, 1H), 3.87 (ddd, J = 8.0 Hz, 5.6 Hz, 3.2 Hz, 1H), 3.72 (dd, J = 11.2 Hz, 3.2 Hz, 1H), 3.56 (dd, J = 11.2 Hz, 5.6 Hz, 1H), 3.38 (s, 3H), 2.70 (dd, J = 16.0 Hz, 7.2 Hz, 1H), 2.63 (dd, J = 16.0 Hz, 3.2 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 208.6, 173.6, 82.2, 78.8, 77.3, 72.2, 71.4, 64.9, 59.4, 59.1, 43.9, 22.6. HRMS (ESI): calcd for C₁₂H₂₂NO₇ ([M + H]⁺) 292.1391, found 262.1397.

8. Reaction of 2a with sulfonyl hydrazide

To a solution of **2a** (50.0 mg, 0.19 mmol) in DMSO (1.0 mL) was added *p*-toluenesulfonyl hydrazide (46.0 mg, 0.25 mmol) at room temperature (25 °C) and the mixture was stirred at 40°C for 16 h. The mixture was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 93:7 to 85:15 over 10 min and 85:15 for 25 min) to give **14a** (15.4 mg, 19%) and **14b** (41.5 mg, 50%).

Compound 14 (14a and 14b)

Compound 14a

 $R_f = 0.44$ (CH₂Cl₂/MeOH 8:1).

Colorless gum. ¹H NMR (400MHz, CD₃OD): δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 4.24 (t, *J* = 3.2 Hz, 1H), 4.09 (dd, *J* = 9.6 Hz, 3.2 Hz, 1H), 4.05 (ddd, *J* = 9.6 Hz, 7.6 Hz, 2.8 Hz, 1H), 3.92 (dd, *J* = 8.4 Hz, 3.2 Hz, 1H), 3.83 (ddd, *J* = 8.4 Hz, 6.2 Hz, 3.0 Hz, 1H), 3.70 (dd, *J* = 11.4 Hz, 3.0 Hz, 1H), 3.53 (dd, *J* = 11.4 Hz, 6.2 Hz, 1H), 2.55 (dd, *J* = 14.8 Hz, 7.6 Hz, 1H), 2.49 (dd, *J* = 14.8 Hz, 2.8 Hz, 1H), 2.43 (s, 3H), 2.01 (s, 3H), 1.92 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 173.7, 158.9, 145.2, 137.3, 130.5, 129.1, 82.3, 78.9, 71.8, 71.4, 65.0, 59.0, 36.1, 24.0, 22.6, 21.5. HRMS (ESI): calcd for C₁₈H₂₈N₃O₇S ([M + H]⁺) 430.1642, found 430.1596.

Compound 14b

 $R_{f} = 0.31$ (CH₂Cl₂/MeOH 8:1).

Colorless gum. ¹H NMR (400MHz, CD₃OD): δ 7.80 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.25 (m, 1H), 4.10-4.02 (m, 2H), 3.84-3.77 (m, 2H), 3.68-3.62 (m, 1H), 3.50-3.45 (m, 1H), 2.49-2.34 (m, 2H), 2.42 (s, 3H), 2.42 (s,), 1.99 (s, 3H), 1.85 (s, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 173.7, 159.0, 145.2, 137.4, 130.5, 129.0, 81.8, 78.7, 72.0, 71.4, 65.0, 59.5, 43.3, 22.7, 21.5, 17.3. HRMS (ESI): calcd for C₁₈H₂₈N₃O₇S ([M + H]⁺) 430.1642, found 430.1599.

9. References

(S1) N. Bragnier, M-C. Scherrmann, Synthesis 2005, 814.

(S2) H.-W. Hagedorn, H. Merten, R. Brossmer, Carbohydr. Res. 1992, 236, 89.

(S3) F. Peri, L. Cipolla, B. La Ferla, P. Dumy, F. Nicotra, Glycoconjugate J. 1999, 16, 399.

		====== CHANNEL f2 SF02 400.1316005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 8.0000000 W PLW12 0.28125000 W PLW13 0.28125000 W F2 - Processing parameters SI SF 100.6126300 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40
		======= CHANNEL f1 ======= SF01 100.6228293 MHz NUC1 13C P1 10.00 usec PLW1 70.0000000 W
		SOLVENT MeOD NS 1024 DS 4 SWH 24038.461 Hz FIDRES 0.366798 Hz AQ 1.3631488 sec RG 195.88 DW 20.800 usec DE 6.50 usec TE 299.5 K D1 2.0000000 sec TD0 1
209.53	 81.67 77.03 77.03 77.03 77.03 77.03 77.03 849.25 499.42 48.57 48.57 48.57 48.57 48.57 48.57 48.57 23.422 29.03 23.422 14.10	PROCNO 1 F2 - Acquisition Parameters Date_ 20150713 Time 17.12 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 65536
		NAME SLJX754 EXPNO 13

	m	Т	7					C1 NJ E1	urrent D AME XPNO ROCNO	ata Parameters SLJXII942	3 2 6 1
		135.7		82.05 82.01 77.59 77.59 77.59 77.59 72.89	20.00 20	49.19 48.98 48.76 48.76 48.34 48.34 47.57 45.89	22.63	F: D: T: 11 P: P!	2 – Acqu ate_ ime NSTRUM ROBHD ULPROG	isition Parame 20150128 14.2 spec 5 mm PABBO BB, zgpg3	eters 3 1 t / 0
		HO NHAc	//					TI SS DI SS F A DI DI DI DI DI DI DI DI DI DI DI DI DI) SLVENT S NH IDRES Q G W E E E 1 1 1 D O	6553 MeO 204 24038.46 0.366794 1.363148 195.8 20.80 6.5 299. 2.0000000 0.0300000	6 D 8 4 1 Hz 8 Hz 8 sec 8 sec 0 usec 0 usec 4 K 0 sec 1
								= SI N' P	 F01 UC1 1 LW1	CHANNEL fl === 100.6228293 13 10.0 70.00000000	====== 3 MHz C 0 usec 3 W
								== SI NI CI P P P	FO2 JC2 PDPRG[2 CPD2 LW2 LW12 LW13	CHANNEL f2 ===: 400.1316005 waltz10 80.00 8.0000000 0.28125000 0.28125000	===== 5 MHz H 6 usec 0 wsec 0 W 0 W
								F: S: WI S: Li P:	2 - Proc I JW SB B C	essing paramet 3276 100.6126314 0 1.0 0 1.4	ters 8 4 MHz M 0 Hz 0
200	180 160	140	120	100 80	60	40	20 0	ppm			

