Supporting Information

A facile one-pot synthesis of 2,3-diarylated benzo[b]furans via relay NHC and palladium catalysis

Yanyan Jia, Tuanjie Li,* Chenxia Yu, Bo Jiang and Changsheng Yao*

School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China

lj2008@jsnu.edu.cn; csyao@jsnu.edu.cn
Table of Contents

1. General information .. S3
2. Characterization of 3aa ... S3
3. Synthesis and characterization of 3a from the intermediate 3aa ... S4
4. Evidences for compatibility of NHC and Pd catalysts .. S5-S6
5. NMR Spectra .. S7-21
1. General information

Common reagents and materials were purchased from commercial sources and purified by recrystallization or distillation. Melting points were determined in open capillaries and were uncorrected. IR spectra were taken on a FT-IR-Tensor 27 spectrometer in KBr pellets and reported in cm$^{-1}$. 1H NMR spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl$_3$ or DMF-d_7 (100 MHz, 13C NMR) with chemical shift (δ) given in ppm relative to TMS as internal standard. High-resolution mass spectra (HRMS) were obtained on a micrOTOF-Q II HRMS/MS instrument (Bruker) with the technique of atmospheric pressure ionization.

2. Characterization of 3aa

2-(2-bromophenyl)-1-(4-chlorophenyl)-2-phenylethanone (3aa). white solid; M.P.: 106 - 107 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.97 - 7.94 (m, 2H, ArH), 7.62 - 7.60 (m, 1H, ArH), 7.40 - 7.26 (m, 7H, ArH), 7.24 - 7.22 (m, 1H, ArH), 7.16 - 7.12 (m, 1H, ArH), 7.04 - 7.02 (m, 1H, ArH), 6.40 (s, 1H, CH); 13C NMR (100 MHz, CDCl$_3$): δ 196.3, 139.6, 138.8, 136.7, 134.8, 133.0, 131.0, 130.3, 129.6, 129.1, 129.0, 128.9, 127.7, 127.6, 124.9, 59.1.
3. Synthesis of 3a from the intermediate 3aa and compound characterization

2-(4-chlorophenyl)-3-phenylbenzofuran (3a)

An oven-dried 25-mL flask equipped with a magnetic stir bar was charged with 2-(2-bromophenyl)-1-(4-chlorophenyl)-2-phenylethanone (3aa, 191.9 mg, 0.5 mmol), Cs$_2$CO$_3$ (179.2 mg, 0.55 mmol), freshly distilled DMF (5 mL), Pd(OAc)$_2$ (11.2 mg, 0.05 mmol) and PPh$_3$ (65.6 mg, 0.25 mmol). The mixture was stirred at 95 °C until completion (monitored by TLC, 30 h). Deionized water (5 mL) was added and the mixture then extracted with EtOAc. The organic layer was dried over MgSO$_4$. The desired product 3a (129 mg, 85 %) were obtained through filtration, concentration in vacuo and purification by column chromatography (silica gel, petroleum). white solid; M.P.: 90 - 92 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.60 - 7.57 (m, 2H, ArH), 7.55 (d, J = 8.0 Hz, 1H, ArH), 7.50 - 7.40 (m, 6H, ArH), 7.36 - 7.32 (m, 1H, ArH), 7.30 - 7.22 (m, 3H, ArH); 13C NMR (100 MHz, CDCl$_3$): δ 154.0, 149.3, 134.2, 132.5, 130.1, 129.7, 129.1, 128.7, 128.2, 127.8, 124.9, 123.1, 120.1, 118.0, 111.1; IR (potassium bromide) (v, cm$^{-1}$): 1618, 1608, 1582, 1560, 1483, 1449, 1402, 1253, 1201, 1089, 1064, 1014, 962, 840, 749, 695; HRMS (APCI) m/z: Calcd. for [M+H]$^+$ C$_{20}$H$_{14}$ClO: 305.0733, found: 305.0723.
4. Evidences for compatibility of NHC and Pd catalysts
A superposition (Sd) of Sb and Sc showed that no striking discrepancy of chemical shift between these two NMR spectrums, apart from the signal of PPh₃. Thus, we concluded safely that the complex of NHC and Pd was not formed here.
5. NMR Spectra

1H NMR Spectrum of Compound (3a)

13C NMR Spectrum of Compound (3a)
1H NMR Spectrum of Compound (3b)

13C NMR Spectrum of Compound (3b)
1H NMR Spectrum of Compound (3c)

13C NMR Spectrum of Compound (3c)
S11

1H NMR Spectrum of Compound (3e)

13C NMR Spectrum of Compound (3e)
H NMR Spectrum of Compound (3f)

$\text{^1H NMR Spectrum of Compound (3f)}$

$\text{^13C NMR Spectrum of Compound (3f)}$
H NMR Spectrum of Compound (3g)

^13C NMR Spectrum of Compound (3g)
^{1}H NMR Spectrum of Compound (3h)

^{13}C NMR Spectrum of Compound (3h)
1H NMR Spectrum of Compound (3i)

13C NMR Spectrum of Compound (3i)
H NMR Spectrum of Compound (3j)

\[1^\text{H} \text{ NMR Spectrum of Compound (3j)} \]

\[13^\text{C} \text{ NMR Spectrum of Compound (3j)} \]
H NMR Spectrum of Compound (3k)

\[\text{CH}_3 \]

\[\text{Cl} \]

\[\text{Cl} \]

\[\text{Cl} \]

\[\text{Cl} \]

\(^1H \) NMR Spectrum of Compound (3k)

\[\text{CH}_3 \]

\[\text{Cl} \]

\[\text{Cl} \]

\[\text{Cl} \]

\(^13C \) NMR Spectrum of Compound (3k)
^{1}H NMR Spectrum of Compound (3m)

^{13}C NMR Spectrum of Compound (3m)
1H NMR Spectrum of Compound (3n)

13C NMR Spectrum of Compound (3n)
1H NMR Spectrum of Compound (3aa)

13C NMR Spectrum of Compound (3aa)