Supporting Information

for

Antimicrobial activity of a quaternized BODIPY

against *Staphylococcus* strains

Duygu Aydın Tekdaş\(^a\), Geetha Viswanathan\(^b\), Sevinc Zehra Topal\(^a\), Chung Yeng Looi\(^c\), Won Fen Wong\(^d\), Grace Min Yi Tan\(^d\), Yunus Zorlu\(^a\), Ayşe Gül Gürek\(^a\)*, Hong Boon Lee\(^b\)* and Fabienne Dumoulin\(^a\)*

\(^a\) Gebze Technical University, Department of Chemistry, P.O.box 141, 41400 Gebze Kocaeli, Turkey

\(^b\) Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

\(^c\) Department of Pharmacology or Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

\(^d\) Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
Content

X-Ray crystallography

Table S1. Crystal data and refinement parameters for 3, 4, and 5.

Characterizations

Fig. S1 ATR-IR spectrum of compound 3
Fig. S2 MALDI-TOF-MS spectrum of 3 (matrix: DHB)
Fig. S3 1H NMR of compound 3 in DMSO-d_6
Fig. S4 13C-NMR of compound 3 in DMSO-d_6
Fig. S5 Crystal structure of compound 3
Fig. S6 ATR-IR spectrum of compound 4
Fig. S7 ESI-MS spectrum of compound 4
Fig. S8 1H NMR of compound 4 in DMSO-d_6
Fig. S9 13C-NMR of compound 4 in DMSO-d_6
Fig. S10. Crystal structure of compound 4
Fig. S11 ATR-IR spectrum of compound 5
Fig. S12 HRMS spectrum of compound 5
Fig. S13 MALDI-TOF-MS spectrum of compound 5
Fig. S14 1H NMR of compound 5 in DMSO-d_6
Fig. S15 13C-NMR of compound 5 in DMSO-d_6
Fig.S16. Crystal structure of compound 5
Fig. S17. Crystal packing of compound 5

Photophysics and photochemistry

References

Checkcif files
X-Ray crystallography

Data for three compounds (for 3, 4, and 5) were obtained with Bruker APEX II QUAZAR three-circle diffractometer. Indexing was performed using APEX2 [1]. Data integration and reduction were carried out with SAINT. [2]. Absorption correction was performed by multi-scan method implemented in SADABS [3]. The structures were solved using the direct methods procedure in SHELXS-97 [4] and then refined by full-matrix least-squares refinements on F^2 using the SHELXL-97 [4]. All non-hydrogen atoms were refined anisotropically using all reflections with $I > 2\sigma(I)$. C-bound H atoms were positioned geometrically and refined using a riding mode. For 4, N-bound H atoms were located from the difference Fourier map and restrained to be 0.89 Å from N atom using DFIX and its position was constrained to refine on its parent N atom with $U_{\text{iso}}(H) = 1.2 U_{eq}(N)$. Crystallographic data and refinement details of 3, 4, and 5 are summarized in Table S1. Crystal structure validations and geometrical calculations were performed using Platon software [5]. Mercury software [6] was used for visualization of the cif files.

Table S1. Crystal data and refinement parameters for 3, 4, and 5.

<table>
<thead>
<tr>
<th>Crystal parameters</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDC</td>
<td>979889</td>
<td>979886</td>
<td>979888</td>
</tr>
<tr>
<td>Empirical Formula</td>
<td>$\text{C}{19}\text{H}{18}\text{BF}_2\text{N}_3\text{O}_2$</td>
<td>$\text{C}{21}\text{H}{26}\text{BF}_2\text{N}_3\text{O}$</td>
<td>$\text{C}{23}\text{H}{29}\text{BCl}_{2}\text{F}_2\text{IN}_3$</td>
</tr>
<tr>
<td>Formula weight (g.mol$^{-1}$)</td>
<td>369.17</td>
<td>385.26</td>
<td>594.10</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>120(2)</td>
<td>120(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
<td>P2₁/n</td>
<td>P-1</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>a (Å)</td>
<td>6.8808(5)</td>
<td>16.4780(12)</td>
<td>8.5150(5)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.3233(6)</td>
<td>7.1238(5)</td>
<td>9.7941(6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>30.274(2)</td>
<td>17.2258(12)</td>
<td>17.2071(10)</td>
</tr>
<tr>
<td>α(°)</td>
<td>90</td>
<td>90</td>
<td>76.580(3)</td>
</tr>
<tr>
<td>β(°)</td>
<td>95.360(3)</td>
<td>101.934(4)</td>
<td>76.491(3)</td>
</tr>
<tr>
<td>γ(°)</td>
<td>90</td>
<td>90</td>
<td>75.658(4)</td>
</tr>
</tbody>
</table>

Crystal size (mm)
0.20 x 0.25 x 0.30 0.13 x 0.29 x 0.38 0.07 x 0.07 x 0.15

V (Å³)
1726.2(2) 1978.4(2) 1328.51(14)

Z
4 4 2

ρ_{caled} (g.cm⁻³)
1.421 1.293 1.485

μ (mm⁻¹)
0.107 0.093 1.436

F(000)
768 816 596

θ range for data collection (°)
1.35 - 25.03 1.56 - 25.04 2.18 - 25.00

h/k/l
-8,8/-9,9/-36,36 -19/19, -8/8, -20/20 -10/10, -11/11, -20/20

Reflections collected
25089 18188 30188

Independent reflections
3038 3510 4684

Absorption correction
Multi-scan Multi-scan Multi-scan

Data/restraints/parameters
3038 / 0 / 248 3510 / 2 / 265 4684 / 0 / 296

Goodness-of-fit on F² (S)
1.133 1.040 1.091

Final R indices [I > 2σ(I)]
R₁= 0.0405,
wR₂= 0.1008
R₁= 0.0525,
wR₂= 0.1449
R₁= 0.0852,
wR₂= 0.2100

R indices (all data)
R₁= 0.0434,
wR₂= 0.1023
R₁= 0.0700,
wR₂= 0.1582
R₁= 0.1216,
wR₂= 0.2288

Largest diff. peak and hole (e.Å⁻³)
0.186 and -0.231 0.318 and -0.240 1.795 and -1.450
Characterization spectra

Figure S1. ATR-IR spectrum of 3

Figure S2. MALDI-TOF-MS spectrum of 3 (matrix: DHB).
Figure S3. 1H NMR spectrum of 3 in DMSO-d_6

Figure S4. 13C NMR spectrum of 3 in DMSO-d_6
Figure S5. Crystal structure of compound 3. Displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The red, grey, blue, pink, yellow, and white coloured atoms represent O, C, N, B, F, and H, respectively.
Figure S6. ATR-IR spectrum of 4.

Figure S7. ESI-MS spectrum of 4.
Figure S8. 1H NMR spectrum of 4 in DMSO-d_6

Figure S9. 13C NMR spectrum of 4 in DMSO-d_6
Figure S10. Crystal structure of compound 4 with EtOH solvate. Displacement ellipsoids are drawn at the 30% probability level. H-atoms are shown as small spheres of arbitrary radii. The red, grey, blue, pink, yellow, and white coloured atoms represent O, C, N, B, F, and H, respectively.

Figure S11. ATR-IR spectrum of 5.
Figure S12. HRMS spectrum of 5

Figure S13. MALDI-TOF-MS spectrum of 5 (no matrix)
Figure S14. 1H NMR spectrum of 5 in DMSO-d_6

Figure S15. 13C NMR spectrum of 5 in DMSO-d_6
Figure S16. Crystal structure of compound 5 with DCM solvate. Displacement ellipsoids are drawn at the 20% probability level. H-atoms are shown as small spheres of arbitrary radii. The grey, blue, pink, yellow, purple, green and white coloured atoms represent C, N, B, F, I, Cl and H, respectively.

Figure S17. Perspective view of crystal packing of compound 5, showing C-H⋯F, C-H⋯I interactions.
Photophysics and photochemistry

Figure S18. Left: Absorption spectra of 5 in DMSO at different four concentrations, Right: Absorbance vs concentration.

Figure S19. Left: Fluorescence excitation and emission spectra of 5 in DMSO (5 µM), Right: Fluorescence area integrate vs absorbance of 5 in DMSO and Rhodamine 6G in water at different three concentrations.
Figure S20. Fluorescence lifetime decay profile of 5 in DMSO.

Figure S21. 3D fluorescence emission spectra in DMSO (excitation ranges from 450 to 550 nm).
References

1. APEX2, version 2010.5-0, Bruker (2010), Bruker AXS Inc., Madison, WI.
2. SAINT, version 7.67A, Bruker (2009), Bruker AXS Inc., Madison, WI.
3. SADABS, version 2008/1, Bruker (2008), Bruker AXS Inc., Madison, WI.
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision: C-C = 0.0027 Å Wavelength=0.71073 Å

Cell:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>6.8808(5) Å</td>
<td>6.8808(5) Å</td>
</tr>
<tr>
<td>b</td>
<td>8.3233(6) Å</td>
<td>8.3233(6) Å</td>
</tr>
<tr>
<td>c</td>
<td>30.274(2) Å</td>
<td>30.274(2) Å</td>
</tr>
<tr>
<td>alpha</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>beta</td>
<td>95.360(3)°</td>
<td>95.360(3)°</td>
</tr>
<tr>
<td>gamma</td>
<td>90°</td>
<td>90°</td>
</tr>
</tbody>
</table>

Temperature: 120 K

Volume: 1726.2(2) Å³ 1726.2(2) Å³

Space group: P 21/n P 21/n 1

Hall group: -P 2yn -P 2yn

Moiety formula: C19 H18 B F2 N3 O2 ?

Sum formula: C19 H18 B F2 N3 O2 C19 H18 B F2 N3 O2

Mr: 369.17 369.17

Dx,g cm⁻³: 1.421 1.421

Z: 4 4

Mu (mm⁻¹): 0.107 0.107

F000: 768.0 768.0

F000’: 768.41

h,k,lmax: 8,9,36 8,9,36

Nref: 3045 3038

Tmin,Tmax: 0.968,0.979 0.880,0.980

Tmin’: 0.968

Correction method: MULTI-SCAN

Data completeness: 0.998 Theta(max) = 25.030°

R(reflections) = 0.0405(2815) wR2(reflections) = 0.1023(3038)

S = 1.133 Npar = 248

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.
<table>
<thead>
<tr>
<th>Alert level G</th>
<th>PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do!</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ALERT level A</td>
<td>Most likely a serious problem - resolve or explain</td>
</tr>
<tr>
<td>0 ALERT level B</td>
<td>A potentially serious problem, consider carefully</td>
</tr>
<tr>
<td>0 ALERT level C</td>
<td>Check. Ensure it is not caused by an omission or oversight</td>
</tr>
<tr>
<td>1 ALERT level G</td>
<td>General information/check it is not something unexpected</td>
</tr>
</tbody>
</table>

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision: C-C = 0.0031 Å Wavelength=0.7107 Å

Cell:
\[a = 16.4780(12)\] \[b = 7.1238(5)\] \[c = 17.2258(12)\]
\[alpha = 90\] \[beta = 101.934(4)\] \[gamma = 90\]

Temperature: 120 K

Calculated Reported
Volume 1978.4(2) 1978.4(2)
Space group P 21/n P 1 21/n 1
Hall group -P 2yn -P 2yn
Moiety formula C19 H20 B F2 N3, C2 H6 O C19 H20 B F2 N3, C2 H6 O
Sum formula C21 H26 B F2 N3 O C21 H26 B F2 N3 O
Mr 385.26 385.26
Dx,g cm\(^{-3}\) 1.293 1.293
Z 4 4
Mu (mm\(^{-1}\)) 0.093 0.093
F000 816.0 816.0
F000' 816.38
h,k,lmax 19,8,20 19,8,20
Nref 3515 3510
Tmin,Tmax 0.968,0.988 0.970,0.990
Tmin' 0.965

Correction method= MULTI-SCAN

Data completeness= 0.999 Theta(max)= 25.040

R(reflections)= 0.0525(2624) wR2(reflections)= 0.1582(3510)

S = 1.040 Npar= 265

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.

[CIF dictionary] [Interpreting this report]

Datablock: I

<table>
<thead>
<tr>
<th>Bond precision:</th>
<th>C-C = 0.0113 Å</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td>a=8.5150(5)</td>
<td>b=9.7941(6)</td>
</tr>
<tr>
<td></td>
<td>alpha=76.580(3)</td>
<td>beta=76.491(3)</td>
</tr>
<tr>
<td>Temperature:</td>
<td>150 K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculated</td>
<td>Reported</td>
</tr>
<tr>
<td>Volume</td>
<td>1328.51(14)</td>
<td>1328.51(14)</td>
</tr>
<tr>
<td>Space group</td>
<td>P -1</td>
<td>P -1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 1</td>
<td>-P 1</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C22 H27 B F2 N3, C H2 Cl2, C22 H27 B F2 N3, C H2 Cl2, I</td>
<td>I</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C23 H29 B Cl2 F2 I N3</td>
<td>C23 H29 B Cl2 F2 I N3</td>
</tr>
<tr>
<td>Mr</td>
<td>594.10</td>
<td>594.10</td>
</tr>
<tr>
<td>Dx, g cm⁻³</td>
<td>1.485</td>
<td>1.485</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mu (mm⁻¹)</td>
<td>1.436</td>
<td>1.436</td>
</tr>
<tr>
<td>F000</td>
<td>596.0</td>
<td>596.0</td>
</tr>
<tr>
<td>F000’</td>
<td>595.85</td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>10,11,20</td>
<td>10,11,20</td>
</tr>
<tr>
<td>Nref</td>
<td>4688</td>
<td>4684</td>
</tr>
<tr>
<td>Tmin, Tmax</td>
<td>0.886,0.904</td>
<td>0.720,0.910</td>
</tr>
<tr>
<td>Tmin’</td>
<td>0.806</td>
<td></td>
</tr>
</tbody>
</table>

Correction method= MULTI-SCAN

Data completeness= 0.999 Theta(max)= 25.000

R(reflections)= 0.0852 (3021) wr2(reflections)= 0.2288 (4684)

S = 1.091 Npar= 296

The following ALERTS were generated. Each ALERT has the format `test-name_ALERT_alert-type_alert-level.`

Click on the hyperlinks for more details of the test.
It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014