Supplementary Information

Effective Photocatalytic Dechlorination of 2,4-Dichlorophenol by A Novel Graphene Encapsulated ZnO/Co₃O₄ Core-shell Hybrid under Visible Light

Md.Rakibuddin and Rajakumar Ananthakrishnan*

Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India.

Instrumentation

Powdered X-ray Diffraction (PXRD) was measured by Bruker APEX-2 diffractometer. Fourier Transform Infra Red spectra (FT-IR) were carried out with a Perkin-Elmer FT-IR spectrophotometer RXI. The X-ray Photoelectron Spectroscopy (XPS) was performed by Specs (German). Thermogravimetric Analysis (TGA) was analysed on Perkin-Elmer instrument, Pyris Diamond TG/DTA with Al₂O₃ crucible. Transmission Electron Microscopy (TEM) and High Resolution TEM (HRTEM) were performed with JEOL JEM2010 electron microscope operating at 200 kV. Energy Dispersive X-ray (EDX) measurement was carried out with FEI TECNAI-G2-20S-TWIN (USA). BET surface area and N₂ sorption isotherms (77K) were carried out by Quantachrome Autosorb-1 instrument. Photoluminescence spectra were recorded by F-7000 FL Spectrophotometer. The photodegradation of 2,4-DCP were measured by UV- 1601, Shimadzu spectrophotometer and high performance liquid chromatography (HPLC, Thermo Fisher Scientific Dionex UltiMate 3000). The HPLC were consisted of a UV/Vis Diode Array Detector and a reversed-phase Acclaim Polar Advantage-II column (3 µm, 120 Å, 3 ×150 mm). The chromatographic conditions were: 80: 20 for
mobile phase (V) acetonitrile: water, 0.3 mL min\(^{-1}\) for the flow rate of mobile phase, 20 µL for the injection volume, 30 °C for column temperature and the detection wavelengths for 2,4-DCP and its degradation products \(o\)-chlorophenol (\(o\)-CP), \(p\)-chlorophenol (\(p\)-CP) and phenol were 285 nm, 274 nm, 280 nm and 270 nm, respectively. The GCMS study of the photo-degraded products was carried out using a Thermo Scientific Trace 1300 gas chromatograph and ISQ Single Quadrupole MS system.

Figure S1 a) FT-IR spectra and b) PXRD pattern of the synthesized Zn-Co NCP precursor and synthesized ZnO-Co\(_2\)O\(_4\) heteronanostructure after calcination of Zn-Co NCP at 550 °C.
Figure S2. TEM image of the prepared a) Zn-Co NCPs, b) ZnO-Co$_3$O$_4$ nanostructures prepared from Zn-Co NCPs after calcinations and c) SAED pattern of prepared ZnO-Co$_3$O$_4$ heteronanostructures.

The average size of the Zn-Co NCP and corresponding derived ZnO-Co$_3$O$_4$ heteronanostructures are ~60 nm and ~25-40 nm. The SAED pattern indicates high crystalline nature of the ZnO-Co$_3$O$_4$.
Figure S3. Zeta potentials of APS-modified ZnO-Co$_3$O$_4$ and GO in aqueous solution at different pH values.
Figure S4. TEM image of the GE/ZnO/Co$_3$O$_4$ core-shell hybrid.

The TEM shows the ZnO-Co$_3$O$_4$ is wrapped by thin graphene shells.
Figure S5. The retention time of the standard substance of o-CP, p-CP and Phenol.
Figure S6 TOC removal at different time during photocatalytic mineralization of 2,4-DCP under visible light irradiation in presence of GE/ZnO/Co$_3$O$_4$.
Figure S7 Plot of \(\ln \frac{C_0}{C_t} \) vs. Time for determination of the rate constant of the GE/ZnO/Co\(_3\)O\(_4\), GO and bare ZnO/Co\(_3\)O\(_4\) ([2,4-DCP]=20 mg/L, [catalyst]= 1.0 g/L, pH=5.0).
Figure S8. a) PXRD pattern and b) TEM image of the GE/ZnO/Co$_3$O$_4$ hybrid after 6th cycle of photocatalytic reaction.

The PXRD patterns indicate that there is no remarkable alteration or shift of the peak in the crystal structure of the catalyst after 5th cycle of operation, and TEM image of the hybrid shows the ZnO/Co$_3$O$_4$ core still is wrapped by graphene shells and hence no noticeable change in morphology is observed after 5th cycle.
Figure S9. GC-MS spectrum of the photo-degraded products of 2,4-DCP after 5 h of photocatalytic reaction.

The GC-MS spectrum of the degraded products of 2,4-DCP after 2 h of photocatalytic reaction (Fig. 15, in the manuscript) exhibits the mass peaks of (a) unreacted 2,4-DCP (m/z, 162.15) and also its fragmented products, like (b) chlorophenols (m/z, 128.21), (c) phenol (m/z, 94.04), (d) p-benzoquinone (m/z, 108.2), (e) acetic acid (m/z, 60.02) and (f) 1,3-butadiene (m/z, 53.23).

However, the GC-MS spectrum of samples subjected to photodegradation for 5 h (above Fig. S9) show significant degradation of the 2,4-DCP. The mass peaks of phenol (m/z, 94.04), p-benzoquinone (m/z, 108.2), acetic acid (m/z, 60.02) and 1,3-butadiene (m/z, 53.23) are mainly observed in the photo-degraded products of 2,4-DCP after 5 h of reaction, however, the peaks related to 2,4-DCP (m/z, 162.15) and chlorinated-phenols (m/z, 128.21) have not been observed.