Near-Infrared Unsymmetrical Blue and Green Squaraine Sensitizers

G. Hanumantha Rao,a,b A. Venkateswararao,a L. Giribabu,a Surya Prakash Singh*a,b,c

aInorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal road, Tarnaka, Hyderabad-500007, India
bAcademy of Scientific and Innovative Research, CSIR-IICT
cNetwork Institute of Solar Energy, (CSIR-NISE) and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
Email: spsingh@iict.res.in

Supporting Information

Fig. S1. 1H NMR spectra of 4 in CDCl3. S2

Fig. S2. 13C NMR spectra of 4 in CDCl3. S2

Fig. S3. 1H NMR spectra of SPSQ1 in CDCl3. S3

Fig. S4. 13C NMR spectra of SPSQ1 in CDCl3. S3

Fig. S5. 1H NMR spectra of SPSQ2 in CDCl3. S4

Fig. S6. 13C NMR spectra of SPSQ2 in CDCl3. S4

Fig. S7. Absorption and emission spectra of the dyes (SPSQ1 and SPSQ2) recorded in dichloromethane. S5
Fig. S1. 1H NMR spectra of 4 in CDCl$_3$.

Fig. S2. 13C NMR spectra of 4 in CDCl$_3$.
Fig. S3. 1H NMR spectra of SPSQ1 in CDCl$_3$.

Fig. S4. 13C NMR spectra of SPSQ1 in CDCl$_3$.
Fig. S5. 1H NMR spectra of SPSQ2 in CDCl$_3$.

Fig. S6. 13C NMR spectra of SPSQ2 in CDCl$_3$.
Fig. S7. Absorption and emission spectra of the dyes (SPSQ1 and SPSQ2) recorded in dichloromethane.