Supporting information

4,7-Di-2-thienyl-2,1,3-benzothiadiazole with hexylthiophene side chains and a benzodithiophene Q2 based copolymer for efficient organic solar cells

Junzhen Rena,b, Xichang Baob, Liangliang Hanb, Jiuxing Wangb, Meng Qiub, Qianqian Zhub, Tong Hua,b, Ruiying Shenga,b, Mingliang Suna, Renqiang Yangb*.

a Institute of Material Science and Engineering, Ocean University of China, Qingdao 266100, People’s Republic of China. Fax: 86-532-66781927; Tel: 86-532-66781690; E-mail: mlsun@ouc.edu.cn

b CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People’s Republic of China. Fax: 86-532-80662778; Tel: 86-532-80662700; E-mail: yangrq@qibebt.ac.cn

‡ J. Ren and X. Bao contributed equally to this work.
Figure S1. The absorption coefficient of PBDT-DTTBT in the CHCl$_3$ solution (a) and thin solid film (b).
Table S1 Photovoltaic properties of the PSCs based on the blend of PBDT-DTTBT and PC_{71}BM

<table>
<thead>
<tr>
<th>Ratio (A : D, w/w)</th>
<th>DIO (%)</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>FF (%)</th>
<th>PCE${max}$/PCE${ave}$a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 : 1</td>
<td>2</td>
<td>0.81±0.01</td>
<td>10.64±0.04</td>
<td>57.53±0.16</td>
<td>4.97/ (4.96±0.01)</td>
</tr>
<tr>
<td>1 : 1</td>
<td>2</td>
<td>0.80±0.01</td>
<td>12.56±0.22</td>
<td>60.38±0.70</td>
<td>6.19/ (6.05±0.16)</td>
</tr>
<tr>
<td>1 : 1.5</td>
<td>2</td>
<td>0.80±0.01</td>
<td>9.99±0.10</td>
<td>62.82±0.23</td>
<td>4.93/ (4.87±0.07)</td>
</tr>
<tr>
<td>1 : 2</td>
<td>2</td>
<td>0.79±0.01</td>
<td>9.68±0.17</td>
<td>62.14±1.04</td>
<td>4.91/ (4.78±0.12)</td>
</tr>
</tbody>
</table>

aThe average PCE was obtained from five devices.

Figure S2. J-V curves of the PSCs based on PBDT-DTTBT and PC$_{71}$BM with different D/A ratios.
Figure S3. The molecular structures of PBDT-DTBT, PBDT-TBT-C8, P(BDT-TT-BT), P(BDT-TT-BT), PBDT_HDO-DT_HBTff and PBDTDTBT.
Figure S4. XRD pattern of PBDT-DTTBT as film
Figure S5. 1H NMR spectrum of compound 4.
Figure S6. 1H NMR spectrum of DTTBT.
Figure S7. 13C NMR spectrum of DTTBT.
Figure S8. 1H NMR spectrum of PBDT-DTTBT.