Supplemental Information

for

Intra-chain radical chemistry as a route to poly(norbornene imide) single-chain nanoparticles: structural considerations and the role of adventitious oxygen.

Justin P. Cole⁹, Jacob J. Lessard⁹, Christopher K. Lyon⁹, Bryan T. Tuten¹⁰, and Erik B. Berda*⁹¹⁰

⁹ Department of Chemistry, University of New Hampshire, Durham, USA
¹⁰ Materials Science Program, University of New Hampshire, Durham, USA

Ph: 603 862 1762
Email: Erik.Berda@unh.edu

Supporting Information

28 Pages

Table of Contents

Supporting Figures...S2
Materials..S3
Instrumentation...S4
Outlines of Synthetic Schemes...S4
Experimental Procedures and Spectra.....................................S7
Table of parent polymer SEC Data..S28
I. Supporting Figures

Figure S1: SEC MALS, UV and RI detector traces for P1 and an NP1a-c

Figure S2: SEC MALS, UV, and RI detector traces for NP1d and NP1e (P1 shown for comparison)

Figure S3: (A) overlay of P2 (top) and NP2 (bottom) 1H NMR spectra highlighting the retention of olefin signals after cross-linking. (B) 13C NMR and (C) 13C DEPT NMR spectra overlay for P2 (red) and NP2 (blue) showing slight shifts in carbon signals before and after cross-linking.
II. Experimental Section

Materials
Reagents were obtained from the indicated commercial suppliers and used as received: carbic anhydride (Sigma Aldrich), hexyl amine (Sigma Aldrich), ethanolamine (Sigma Aldrich), methacrylic acid (Sigma Aldrich), N,N'-dicyclohexylcarbodiimide (Sigma Aldrich), dimethyl amino pyridine (Sigma Aldrich), methyl methacrylate (Sigma Aldrich), maleimide (Sigma Aldrich), furan

Figure S4: SEC overlay of a P3 before and after intra-chain cross-linking under rigorous oxygen exclusion.

Figure S5: SEC overlay of a poly(oxanorbornene imide) before and after intra-chain cross-linking.
(Sigma Aldrich), dichloromethane (Fisher Scientific), hexanes (Fisher Scientific), methanol (Fisher Scientific), tetrahydrafuran (Fisher Scientific), silica gel (230-400 mesh) (SiliCycle) Azobisisobutyronitrile (Sigma Aldrich), chloroform-d (Cambridge Isotope Laboratories), and 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (Sigma Aldrich). Dry toluene, DCM, and THF were obtained from an Innovative Technology solvent purification system model SPS-400-5.

Instrumentation
Photochemical reactions were conducted in a Luzchem photo-reactor CCP-4V equipped with 4 UVA (350 nm centered) and 4 UVC (254 nm centered) lamps. 1H NMR (400 MHz) and 13C NMR (101 MHz) spectra were recorded on a Varian Associates Mercury 400 spectrometer. Solvents (CDCl$_3$) contained 0.03% v/v TMS as an internal reference, chemical shifts (δ) are reported in ppm relative to TMS. Peak abbreviations are used as follows: s=singlet, d=doublet, t=triplet, m=multiplet, br=broad, Ar=Aryl. Size exclusion chromatography (SEC) was performed on a Tosoh EcoSEC dual detection (RI and UV) SEC system coupled to an external Wyatt Technologies miniDAWN Treos multi angle light scattering (MALS) detector and a Wyatt Technologies ViscoStarII differential viscometer. Samples were run in THF at 40 ºC at a flow rate of 0.35 mL/min. The column set was two Tosoh TSKgel SuperMultipore HZ-M columns (4.6x150 mm), one Tosoh TSKgel SuperH3000 column (6x150mm) and one Tosoh TSKgel SuperH4000 column (6x150mm). Increment refractive index values (dn/dc) were calculated online assuming 100% mass recovery (RI as the concentration detector) using the Astra 6 software package (Wyatt Technologies) by selecting the entire trace from analyte peak onset to the onset of the solvent peak or flow marker. This method gave the expected values for polystyrene (dn/dc = .185, Mn = 30k) when applied to a narrow PDI PS standard supplied by Wyatt. Absolute molecular weights and molecular weight distributions were calculated using the Astra 6 software package. Intrinsic viscosity [η] and viscometric hydrodynamic radii (R_h) were calculated from the differential viscometer detector trace and processed using the Astra 6 software.
Outline of Synthetic Schemes

Scheme S1 Overview of Norbornene Monomer Synthetic Scheme

Scheme S2 Overview of Oxanorbornene Synthetic Scheme
Experimental Procedures

Synthesis of Compound 1: 200.16 g of Carbic Anhydride was refluxed in 200 mL of 1,2 dichlorobenzene at 185° C for 4 hours. The solution was then recrystallized from benzene 3x affording approximately 30 g (95% exo)
norbornene dicarboximide. 1H NMR (400 MHz CDCl$_3$): δ 6.34 (s, 2H), 3.47 (s, 2H), 3.01 (s, 2H), 1.70-1.67 (m, 1H), 1.48-1.45 (m, 1H)

![Molecule](image)

Figure S6 1H NMR of Exo Carbic Anhydride

Synthesis of M1: Cis-5-norbornene-exo-2,3-dicarboxylic anhydride (3.000g) was added to RBF with 30mL of Toluene. 2.52 mL of hexylamine and 280 µL of triethylamine were added to reaction mixture. A Dean-Stark trap was set up and mixture was heated at 140° C overnight. After 16 hours TLC was performed and all anhydride had been consumed. Toluene was removed by rotary evaporation. Sample was then dissolved in DCM and washed with 30 mL of 0.1N HCL, then 30 mL of brine. The organic layer was dried with MgSO$_4$ and DCM was removed via rotary evaporation. Yield: 2.58 g (57%) 1H NMR (400 MHz CDCl$_3$): δ 6.29 (t, J=1.87 Hz, 2H), 3.50-3.42 (m, 2H), 3.29-3.26 (m, 2H), 2.67 (d, J=1.36 Hz, 2H), 1.60-1.48 (m, 2H), 1.35-1.20 (m, 8H), 0.92-0.82 (m, 3H). 13C NMR (CDCl$_3$): δ 178.33, 138.04, 48.01, 45.38, 42.92, 38.98, 31.54, 27.95, 26.84, 22.69, 14.21.
Figure S7 1H NMR of M1

Figure S8 13C NMR of M1
Synthesis of M2: Cis-5-norbornene-exo-2,3-dicarboxylic anhydride (1.000g) was added to RBF with 10mL of Toluene. 386 µL of 2-aminoethanol and 93 µL of triethylamine were added to reaction mixture. A Dean-Stark trap was set up and mixture was heated at 145° C overnight. After 16 hours TLC was performed and all anhydride had been consumed. Toluene was removed by rotary evaporation. Sample was then dissolved in DCM and washed with 10 mL of 0.1N HCL, then 10 mL of brine. The organic layer was dried with MgSO₄ and DCM was removed via rotary evaporation. Yield: 0.987 g (78.27%). ¹H NMR (400 MHz CDCl₃): δ 6.31 (t, J=1.78 Hz, 2H), 3.82-3.69 (m, 4H), 3.30 (s, 2H), 2.73 (s, 2H), 2.07 (td, J=5.73, 0.67 Hz, 1H), 1.56-1.50 (m, 1H), 1.38-1.32 (m, 1H).

![M2](image.png)

Figure S9 ¹H NMR of M2

Synthesis of M3: 1.00g (1 eq) of Exo-N-ethanol-NBI was added to 3 neck RBF. 10 mL of DCM was added and stirred until alcohol dissolved. 1.49 g (1.5 eq) of DCC, 0.0541 g (0.11 eq) of DMAP, and 0.49 mL (1.2 eq) MAA were added to the solution via syringe. Stirred overnight at RT. DCHU was filtered off and solution was washed with DIW (2x20 mL), then dried with MgSO₄. DCM was removed by rotary evaporation and product was purified by flash chromatography.
using gradient of hexanes:EtOAc. Yield: 0.40 g (30%). 1H NMR (400 MHz CDCl$_3$): δ 6.29 (t, J=1.6 Hz, 2H), 6.07-6.04 (m, 1H), 5.57-5.55 (m, 1H), 4.30 (t, J=5.0 Hz, 2H), 3.82 (t, J=5.35 Hz, 2H), 3.29-3.76 (m, 2H), 2.70 (d, J=1.1 Hz, 2H), 1.92-1.87 (m, 4H), 1.30-1.25 (m, 1H). 13C NMR (101 MHz CDCl$_3$): δ 177.98, 167.16, 138.03, 136.01, 126.40, 61.38, 48.04, 45.47, 42.88, 37.70, 18.42.

![Figure S10 1H NMR of M3](image1)

![Figure S11 13C NMR of M3](image2)
Synthesis of Compound 2: To a round bottom flask 2.00 g of maleic anhydride and 2.55 mL of hexyl amine were added. 100 mL of toluene and 0.312 mL of triethylamine were added and a Dean-Stark trap was set up. The solution was heated at 140° C overnight. Toluene was removed by rotary evaporation. Sample was then dissolved in DCM and washed with 10 mL of 0.1N HCL, then 10 mL of brine. The organic layer was dried with MgSO₄ and DCM was removed via rotary evaporation. Yield 1.95 g (52.78%). ¹H NMR (400 MHz CDCl₃): δ 6.68 (s, 2H), 3.60-3.42 (m, 2H), 1.39-1.17 (m, 8H), 0.86 (t, 3H)

Synthesis of M6: 1.5 g of N-Hexyl Maleimide and 0.936 mL of Furan were placed in a microwave reactor with 10 mL of water. Reaction was heated to 90°
C for 1 hour. DCM was added to the mixture and organic layer was extracted and dried with MgSO$_4$. Product was used without further purification. Yield 0.195 g (9.52%). 1H NMR (400 MHz CDCl$_3$): δ 6.52 (s, 2H), 5.27 (s, 2H), 2.83 (t, 2H), 1.34-1.28 (m, 8H), 0.87 (t, 3H)

General ROMP Procedure: In a 20 mL scintillation vial, Grubbs' third generation catalyst (1 eq) was dissolved in 1 mL of THF. The solution was degassed via sparging with argon for 15 minutes. Norbornene-exo-dicarboximide monomers were dissolved in dry THF and added via syringe to the solution. The reaction was run at room temp for 15 minutes and then quenched with excess ethyl vinyl ether. The polymer was then precipitated into room temperature methanol and isolated as a gummy solid with quantitative yield.

General Collapse Procedure: Polymer was dissolved in toluene to a concentration of 0.5 mg/mL. Solution was sparged with argon for 15 minutes. AIBN was dissolved in toluene and added to the solution. The reaction was heated at 80° C overnight. Toluene was then removed via rotary evaporation and nanoparticles were dissolved in DCM and precipitated into room temperature methanol. Product was recovered as gummy white solid in quantitative yield.
General Rigorous Oxygen Free Collapse Procedure: Polymer dissolved in toluene to a concentration of 0.5 mg/mL. AIBN was added to polymer solution. Solution was then degassed by multiple freeze, pump, thaw cycles (until visible gas evolution ceased) and then backfilled with argon. The reaction was heated at 80°C overnight. Solution was cooled and excess BHT was added to quench the reaction. Toluene was then removed via rotary evaporation and product dissolved in DCM and precipitated into room temperature methanol. Product was recovered as a gummy white solid in quantitative yield.

Hydrogenation Procedure: 1.00 g of Polymer and p-toluene sulfonyl hydrazide (3 eq calculated based on olefins) were added to 50 mL round bottom flask with 10 mL of xylenes. Triethylamine (3 eq) was added and solution was refluxed at 140°C for three hours. At this point solution was cooled and another portion of PTSH and TEA was added to the round bottom flask. The solution was refluxed again for three hours and then cooled and precipitated into room temperature methanol. Product was recovered as gummy white solid in quantitative yield.

Post Polymerization DCC: 0.5 g of polymer, dicyclohexyl carbodiimide (1.5 eq), and dimethyl aminopyridine (0.1 eq) were added to 100 mL round bottom flask with 20 mL of dry DCM. Methacrylic acid (1.2 eq) was added via syringe and solution was stirred overnight. The white precipitate was removed by filtration and the polymer was precipitated into room temperature methanol. Product was recovered as a white gummy solid in quantitative yield.

Polymer P1: 1H NMR (400 MHz CDCl$_3$): δ 6.10-6.02 (br m), 5.84-5.65 (br m), 5.62-5.40 (br m), 4.43-4.19 (br m), 3.87-3.67 (br m), 3.52-2.54 (br m), 2.37-1.80 (br m), 1.74-1.35 (br m), 0.97-0.78 (br m). dn/dc: 0.1357 M$_w$: 135,000 g/mol
Figure S14 1H NMR of Polymer P1

Figure S15 GPC Trace of Polymer P1
Polymer P2: 1H NMR (400 MHz CDCl$_3$): δ 5.86-5.60 (br m), 5.58-5.33 (br m), 3.66-2.55 (br m), 2.32-1.94 (br m), 1.73-1.41 (br m), 1.36-1.15 (br m), 0.90-0.77 (br m). 13C NMR (101 MHz CDCl$_3$): 13C NMR (101 MHz, CDCl$_3$) ? 178.51, 133.77, 132.88, 132.20, 131.98, 131.72, 77.59, 77.47, 77.27, 76.95, 53.19, 52.79, 52.62, 51.95, 51.16, 51.04, 46.46, 46.07, 43.06, 42.43, 42.17, 41.81, 41.54, 41.07, 39.12, 38.95, 38.77, 31.65, 31.59, 31.51, 27.86, 26.86, 26.77, 26.65, 22.73, 22.69, 14.24, 0.22. dn/dc: 0.1331 M_w: 121,000 g/mol

![Figure S16 1H NMR of Polymer P2](image-url)
Figure S17: 13C NMR of Polymer P2

Figure S18: GPC Trace of Polymer P2

Polymer P2H: 1H NMR (400 MHz CDCl$_3$): δ 3.52-3.35 (br m), 2.88-2.71 (br m), 2.40-2.15 (br m), 2.06-1.76 (br m), 1.71-1.41 (br m), 1.41-0.61 (br m). dn/dc: 0.1213 M$_w$: 140,000 g/mol
Polymer P3: 1H NMR (400 MHz CDCl$_3$): δ 6.10-6.05 (br m), 5.78-5.68 (br m), 5.61-5.38 (br m), 4.34-4.26 (br m), 3.86-2.62 (br m), 2.35-1.03 (br m), 0.93-0.78 (br m). dn/dc: 0.1612 M_w: 59,000 g/mol
Figure S21 1H NMR of Polymer P3

Figure S22 GPC Trace of Polymer P3
Poly Oxa NBI: 1H NMR (400 MHz CDCl$_3$): δ 6.10-6.02 (br m), 5.87-5.67 (br m), 5.14-4.94 (br m), 4.59-4.39 (br m), 3.55-3.22 (br m), 1.65-1.48 (br m), 1.40-1.06 (br m), 0.93-0.72 (br m). dn/dc: 0.1158 M$_w$: 177,000

Figure S23 1H NMR of Poly Oxa NBI
Figure S24 GPC Trace of Poly Oxa NBI

Poly NBI-OH: 1H NMR (400 MHz CDCl$_3$): δ 5.83-5.66 (br m), 5.63-5.42 (br m), 3.86-2.61 (br m), 2.36-1.76 (br m), 1.73-1.39 (br m), 1.35-1.09 (br m), 0.95-0.77 (br m). dn/dc: 0.1660 M$_w$: 62,000 g/ mol

Figure S25 1H NMR of Poly NBI-OH
Hydrogenated Poly NBI-OH: 1H NMR (400 MHz CDCl$_3$): δ 3.80-3.31 (br m), 2.92-2.71 (br m), 2.38-2.16 (br m), 2.07-1.76 (br m), 1.65-1.04 (br m), 0.93-0.80 (br m). dn/dc: 0.1612 M$_w$: 61,000 g/mol
Figure S28 GPC Trace of Hydrogenated Poly NBI-OH

Nanoparticle NP1: 1H NMR (400 MHz CDCl$_3$): δ 6.10-6.02 (br m), 5.84-5.65 (br m), 5.62-5.40 (br m), 4.43-4.19 (br m), 3.87-3.67 (br m), 3.52-2.54 (br m), 2.37-1.80 (br m), 1.74-1.35 (br m), 0.97-0.78 (br m). dn/dc: 0.1357
Figure S30 GPC Trace of Nanoparticle NP1

Nanoparticle NP2: 1H NMR (400 MHz CDCl$_3$): δ 5.86-5.60 (br m), 5.58-5.33 (br m), 3.66-2.55 (br m), 2.32-1.94 (br m), 1.73-1.41 (br m), 1.36-1.15 (br m), 0.90-0.77 (br m). 13C NMR (101 MHz CDCl$_3$): 13C NMR (101 MHz, CDCl$_3$) = 178.51, 133.77, 132.88, 132.20, 131.98, 131.72, 77.59, 77.47, 77.27, 76.95, 53.19, 52.79, 52.62, 51.95, 51.16, 51.04, 46.46, 46.07, 43.06, 42.43, 42.17, 41.81, 41.54, 41.07, 39.12, 38.95, 38.77, 31.65, 31.59, 31.51, 27.86, 26.86, 26.77, 26.65, 22.73, 22.69, 14.24, 0.22. dn/dc: 0.1331
Figure S31 1H NMR of Nanoparticle NP2

Figure S32 GPC Trace of Nanoparticle NP2
Nanoparticle NP3: 1H NMR (400 MHz CDCl$_3$): δ 6.10-6.05 (br m), 5.78-5.68 (br m), 5.61-5.38 (br m), 4.34-4.26 (br m), 3.86-2.62 (br m), 2.35-1.03 (br m), 0.93-0.78 (br m). dn/dc: 0.1612
Nanoparticle NP1-FPT: 1H NMR (400 MHz CDCl$_3$): δ 6.10-6.02 (br m), 5.84-5.65 (br m), 5.62-5.40 (br m), 4.43-4.19 (br m), 3.87-3.67 (br m), 3.52-2.54 (br m), 2.37-1.80 (br m), 1.74-1.35 (br m), 0.97-0.78 (br m). dn/dc: 0.1357

Figure S35 1H NMR of NP1-FPT
Figure S36 GPC Trace of Nanoparticle NP1-FPT

Nanoparticle NP2-FPT

Figure S37 GPC Trace of Nanoparticle NP2-FPT
Nanoparticle NP3-FPT

![Figure S38 GPC Trace of Nanoparticle NP3-FPT](image)

Table S1: SEC data on parent polymers

<table>
<thead>
<tr>
<th>Sample</th>
<th>dn/dc</th>
<th>Mw (g/mol)</th>
<th>Mw/Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.1357</td>
<td>135,000</td>
<td>1.09</td>
</tr>
<tr>
<td>P2</td>
<td>0.1331</td>
<td>121,000</td>
<td>1.01</td>
</tr>
<tr>
<td>P2h</td>
<td>0.1213</td>
<td>140000</td>
<td>1.02</td>
</tr>
<tr>
<td>P3</td>
<td>0.0545</td>
<td>175000</td>
<td>1.12</td>
</tr>
<tr>
<td>P2 200k</td>
<td>0.1024</td>
<td>204000</td>
<td>1.01</td>
</tr>
<tr>
<td>P1 (for FPT)</td>
<td>0.1437</td>
<td>116000</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Note on SEC data: All parent polymer molecular weights correspond well with predicted values. We’ve found that reliable nanoparticle dn/dc values are very difficult to obtain for these polymers, based largely on the dilute conditions and vanishing amounts of material we are working with. This makes accurate absolute molecular weight data difficult to obtain for this particular system. In this report we rely on the size exclusion effect of our instrument to confirm changes in hydrodynamic volume. Based on triplicate runs of PS standards of several molecular weights we’ve determined the error in retention time of our instrument to be +/- .05 min. All of the shifts reported here fall well outside of this range.

References: