SUPPORTING INFORMATION

for

Efficient Synthesis and Stabilization of Poly(propylene carbonate) from
Delicately Designed Bifunctional Aluminum Porphyrin Complex

Xingfeng Sheng, Wei Wu, Yusheng Qin, Xianhong Wang, Fosong Wang

a Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China.
b University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China

* CORRESPONDING AUTHOR: Dr. Yusheng Qin
Fax: +86 431 85262252; Tel: +86 431 85262252; E-mail: ysqin@ciac.jl.cn

** CORRESPONDING AUTHOR: Prof. Xianhong Wang
Fax: +86 431 85689095; Tel: +86 431 85262250; E-mail: xhwang@ciac.jl.cn

Contents

1. General information
2. Synthesis of complexes
3. 1H NMR spectra of the copolymer
4. 1H NMR and 13C NMR spectra of the complexes
5. Depolymerization of copolymers at ambient temperature

1. General Information

All reactions of air- and/or moisture-sensitive complexes and product manipulations were performed under inert atmosphere using standard Schlenk technique or in a glove box. Dichloromethane (CH2Cl2), chloroform (CHCl3), acetonitrile (CH3CN), pyrrole, propylene oxide (PO) were distilled over CaH2 under inert atmosphere. The CO2 gas (99.999%) was provided from Sipin Jianxin Gas Ltd. and used without further purification. Other chemicals were obtained from Aldrich and Acros, and used as received without further purification unless otherwise stated.

Solution NMR spectra were collected at ambient temperatures using a Bruker ARX-300 spectrometer at room temperature in deuterated chloroform (CDCl3) or dimethyl sulfoxide (DMSO) with tetramethylsilane (TMS) as internal reference. Solvent proton shifts (ppm): CDCl3, 7.26 (s); DMSO-d6, 2.50 (s). Solvent carbon shifts (ppm): CDCl3, 77.16 (t); DMSO-d6, 39.52 (m). Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF/MS)
was performed on a Bruker autoflex III mass spectrometer. The molecular weight and molecular weight distribution of the poly(propylene carbonate) were determined by gel permeation chromatography (GPC) at 25°C in polystyrene standard on Waters 410 GPC instrument with dichloromethane as the eluent, where the flow rate was set at 1.0 mL min⁻¹.

2. Synthesis of complexes

Synthesis of Complexes 1j-1o.

Synthesis of compounds 4-6

Compounds 4 was obtained as reported in the literature.¹ A solution of pyrrole (2 mol) and p-methoxybenzaldehyde (20 mmol) was degassed with a stream of argon for 10 min, then InCl₃ (0.4 g, 2.0 mmol) was added, and the mixture was stirred at room temperature for 2 h. Then NaOH (0.2 mol) was added and the mixture was stirred for another 45 min. After filtration, the filtrate was concentrated under vacuum. The crude product was purified by column chromatography (silica, petroleum ether/dichloromethane v/v = 1:1). The product was obtained as a light yellow solid in 87% yield. Similar experiments were carried out in the preparation of compounds 5-6.

Compound 4

¹H NMR (300 MHz, CDCl₃, δ): 7.91 (brs, 2H, NH), 7.12 (d, J=9 Hz, 2H), 6.84 (d, J=9 Hz, 2H),
6.69 (m, 2H), 6.16 (m, 2H), 5.92 (s, 2H), 5.43 (s, 1H), 3.80 (s, 3H).

Compound 5

\(^1\)H NMR (300 MHz, CDCl\(_3\), \(\delta\)): 8.05 (brs, 2H, NH), 7.01 (d, \(J=9\) Hz, 1H), 6.66 (m, 2H), 6.49 (m, 2H), 6.14 (m, 2H), 5.90 (m, 2H), 5.73 (s, 1H), 3.80 (s, 3H), 3.77 (s, 3H).

Compound 6

\(^1\)H NMR (300 MHz, CDCl\(_3\), \(\delta\)): 8.48 (brs, 2H, NH), 6.63 (m, 2H), 6.20 (s, 2H), 6.07-6.10 (m, 3H), 5.90 (m, 2H), 3.81 (s, 3H), 3.73 (s, 6H).

Synthesis of compounds 7-8

These compounds were synthesized as reported in the literature,\(^2\) and their \(^1\)H NMR spectra were listed below. To a solution of bromobenzene (10 mmol) in anhydrous diethyl ether (20 mL) under an argon atmosphere, n-butyllithium (1.5 eq., 2.5 M in hexane) was slowly added at 0 °C under stirring followed by addition of \(\alpha,\omega\)-dibromoalkane (4.0 eq.). After the mixture was refluxed for 2 h, it was cooled to room temperature, subsequently partitioned between diethyl ether (40 mL) and water (30 mL). The aqueous phase was extracted with diethyl ether (2 \(\times\) 20 mL), the combined organic layers were dried over MgSO\(_4\), evaporated in vacum and purified by flash chromatography on silica gel using hexane as a mobile phase. Then 80 mmol \(\alpha\)-bromo-\(\omega\)-phenylalkane was dissolved in 120 ml dry dichloromethane and the mixture was cooled to 0-5 °C on an ice bath. A gas-trap was connected to the setup. 24 g (128 mmol) TiCl\(_4\) was added carefully but quickly, then dichloromethyl methyl ether (8 g, 67 mmol) was added dropwise in approximately 20 min to the cold mixture, while the temperature was kept between 0 and 2 °C. The mixture was stirred for 5 min, slowly heated to room temperature and subsequently stirred at 35 °C for 15 min. Late the reaction mixture was slowly poured in a beaker filled with ice and subsequently transferred to a separation funnel and extracted with dichloromethane. The organic layer was collected and the aqueous phase was extracted two more times with dichloromethane. The combined organic layers were washed with a saturated NaHCO\(_3\) solution, and dichloromethane was evaporated in vacum. The crude product was purified by column chromatography (silica, petroleum ether/EtOAc gradient) to obtain the pure product.

Compound 7

\(^1\)H NMR (300 MHz, CDCl\(_3\), \(\delta\)): 9.98 (s, 1H), 7.83 (d, \(J=9\) Hz, 2H), 7.38 (d, \(J=6\) Hz, 2H), 3.39 (t, \(J=6\) Hz, 2H), 2.87 (t, \(J=6\) Hz, 2H), 2.19 (m, 2H).
Compound 8

1H NMR (300 MHz, CDCl$_3$, δ): 9.97 (s, 1H), 7.81 (d, J=9 Hz, 2H), 7.34 (d, J=6 Hz, 2H), 3.39 (t, J=6 Hz, 2H), 2.69 (t, J=9 Hz, 2H), 1.85 (m, 2H), 1.66 (m, 2H), 1.47 (m, 2H), 1.36 (m, 2H).

Synthesis of compounds 9-12

Compound 9 was obtained as reported.3 A solution of compound 4 (1.9 mmol) and compound 7 (1.9 mmol) in 380 mL dry dichloromethane was degassed with a stream of argon for 10 min, the solution was stirred for 1 h after trifluoroacetic acid (0.37 mL) was added, then 2,3-dichloro-5,6-dicyano-1-hydroxypyrene (DDQ) (0.9 g) was added and the solution was stirred for another 1 h. After filtration, the filtrate was concentrated using a rotary evaporator to produce a residue which was purified by column chromatography (silica, petroleum ether/dichloromethane v/v = 1:1) to obtain a purple solid in 24% yield. Similar experiments were carried out in the preparation of compounds 10-12.

Compound 9

1H NMR(300 MHz, CDCl$_3$, δ): 8.85 (d, J=9 Hz, 8H), 8.13 (m, 8H), 7.59 (d, J=9 Hz, 4H), 7.30 (d, J=9 Hz, 4H), 4.09 (s, 6H), 3.65(t, J=6 Hz, 4H), 3.13 (t, J=6 Hz, 4H), 2.47 (m, 4H), -2.76 (s, 2H). 13C NMR (75 MHz, CDCl$_3$, δ): 159.54, 140.12, 135.74, 134.73, 131.22, 126.99, 120.12, 112.34, 55.68, 34.41, 34.13, 33.38.

MS (MALDI-TOF): m/z = 915.2 [M+H]$^+$ (calcd. 915.18).

Compound 10

1H NMR(300 MHz, CDCl$_3$, δ): 8.85 (d, J=9 Hz, 8H), 8.16 (m, 6H), 7.58 (m, 6H), 6.91 (s, 2H), 4.10 (s, 6H), 3.65(t, J=6 Hz, 4H), 3.59 (s, 6H), 3.13 (t, J=6 Hz, 4H), 2.48 (m, 4H), -2.73 (s, 2H). 13C NMR (75 MHz, CDCl$_3$, δ): 161.42, 160.42, 140.12, 135.74, 134.73, 131.22, 126.99, 120.13, 103.56, 55.93, 55.73, 34.35, 34.07, 33.36.

MS (MALDI-TOF): m/z = 975.2 [M+H]$^+$ (calcd. 975.20).

Compound 11

1H NMR(300 MHz, CDCl$_3$, δ): 8.82 (d, J=9 Hz, 8H), 8.16 (d, J=9 Hz, 4H), 7.57 (d, J=9 Hz, 4H), 6.60 (d, J=9 Hz, 4H), 4.12 (s, 6H), 3.66(t, J=6 Hz, 4H), 3.51 (s, 12H), 3.13 (t, J=6 Hz, 4H), 2.48 (m, 4H), -2.63 (s, 2H). 13C NMR (75 MHz, CDCl$_3$, δ): 160.89, 159.89, 140.17, 135.74, 134.41, 131.52, 127.01, 120.11, 55.99, 55.75, 34.44, 34.15, 33.38.

MS (MALDI-TOF): m/z = 1035.3 [M+H]$^+$ (calcd. 1035.23).
Compound 12

1H NMR (300 MHz, CDCl$_3$, δ): 8.81 (d, J=9 Hz, 8H), 8.17 (d, J=9 Hz, 4H), 7.57 (d, J=9 Hz, 4H), 6.56 (d, J=9 Hz, 4H), 4.11 (s, 6H), 3.51 (m, 16H), 2.97 (t, J=6 Hz, 4H), 1.97 (m, 8H), 1.62 (m, 8H), -2.63 (s, 2H). 13C NMR (75 MHz, CDCl$_3$, δ): 160.49, 159.47, 140.46, 136.52, 134.72, 131.52, 129.40, 128.36, 126.86, 124.11, 118.82, 55.98, 55.78, 35.51, 34.06, 32.86, 31.30, 28.55, 28.15. MS (MALDI-TOF): m/z = 1119.3 [M+H]$^+$ (calcd. 1119.32).

Synthesis of compounds 13-16

A solution of compound 9 (1.0 mmol) in 20 mL dry dichloromethane was degassed with a stream of argon for 5 min in an ice-bath. After 1.3 mmol Et$_2$AlCl was added slowly, the reaction solution was heated to room temperature and stirred for 1 h. The mixture was concentrated using a rotary evaporator to produce a residue which was purified by column chromatography (neutral alumina, dichloromethane/methanol v/v = 10:1) and compound 13 was obtained as a purple solid in 98% yield. Similar experiments were carried out in the preparation of compounds 14-16.

Compound 13

1H NMR (300 MHz, DMSO-d$_6$, δ): 9.00 (d, J=9 Hz, 8H), 8.11 (m, 8H), 7.69 (d, J=9 Hz, 4H), 7.40 (d, J=9 Hz, 4H), 4.06 (s, 6H), 3.88 (t, J=6 Hz, 4H), 3.10 (t, J=6 Hz, 4H), 2.43 (m, 4H). 13C NMR (75 MHz, CDCl$_3$, δ): 161.27, 146.59, 140.54, 138.69, 135.18, 134.18, 132.05, 127.12, 119.97, 112.63, 34.65, 33.93, 33.40. MS (MALDI-TOF): m/z = 855.2 [M-Cl]$^+$ (calcd. 855.18).

Compound 14

1H NMR (300 MHz, DMSO-d$_6$, δ): 9.01 (d, J=9 Hz, 8H), 8.11 (m, 6H), 7.69 (m, 6H), 7.05 (s, 2H), 4.08 (s, 6H), 3.88 (t, J=6 Hz, 4H), 3.51 (s, 6H), 3.10 (t, J=6 Hz, 4H), 2.43 (m, 4H). 13C NMR (75 MHz, CDCl$_3$, δ): 161.27, 159.72, 146.58, 140.54, 138.69, 135.36, 134.18, 132.06, 128.29, 127.10, 120.00, 56.01, 55.59, 34.65, 33.93, 33.40. MS (MALDI-TOF): m/z = 939.2 [M-Cl]$^+$ (calcd. 939.15).

Compound 15

1H NMR (300 MHz, DMSO-d$_6$, δ): 9.00 (d, J=9 Hz, 8H), 8.11 (d, J=9 Hz, 4H), 7.69 (d, J=9 Hz, 4H), 6.65 (d, J=9 Hz, 4H), 4.07 (s, 6H), 3.88 (t, J=6 Hz, 4H), 3.51 (s, 12H), 3.10 (t, J=6 Hz, 4H), 2.43 (m, 4H). 13C NMR (75 MHz, CDCl$_3$, δ): 161.20, 159.72, 146.61, 140.70, 138.69, 134.22, 132.10, 128.32, 127.15, 120.04, 56.08, 54.96, 34.68, 33.75, 32.21.
MS (MALDI-TOF): m/z = 999.2 [M-Cl]+ (calcd. 999.17).

Compound 16

1H NMR(300 MHz, DMSO-d$_6$, δ): 8.98 (d, J=9 Hz, 8H), 8.08 (d, J=9 Hz, 4H), 7.66 (d, J=9 Hz, 4H), 6.64 (d, J=9 Hz, 4H), 4.14 (s, 6H), 3.48 (m, 16H), 2.94 (t, J=6 Hz, 4H), 1.92 (m, 8H), 1.52 (m, 8H). 13C NMR (75 MHz, CDCl$_3$, δ): 161.17, 159.73, 146.97, 141.42, 139.83, 138.68, 134.09, 132.00, 128.27, 125.58, 120.20, 56.06, 54.92, 35.14, 34.66, 32.51, 32.19, 30.81, 27.36.

MS (MALDI-TOF): m/z = 1059.2 [M-Cl]+ (calcd. 1059.19).

Synthesis of compounds 17-22

Compound 17 was obtained as reported. A solution of compound 13 (1.0 mmol) and tributylamine (40 mmol) in anhydrous CHCl$_3$ (5.0 mL) and CH$_3$CN (5.0 mL) was refluxed for 96 h under Argon atmosphere. After cooled to room temperature, the solvent was removed by a rotary evaporator, and the layer of Bu$_3$N was removed with a pipette. The residue was washed 3 times by ether, and the yield was 95%. Similar experiments were carried out in the preparation of compounds 18-22.

Compound 17

1H NMR(300 MHz, DMSO-d$_6$, δ): 9.01 (m, 8H), 8.13 (m, 8H), 7.70 (m, 4H), 7.42 (m, 4H), 4.06 (s, 6H), 3.38 (m, 16H), 2.98-3.09 (m, 4H), 2.34 (m, 4H), 1.61-1.68 (m, 12H), 1.26-1.33 (m, 12H), 0.83-0.92 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 159.26, 146.58, 140.64, 135.18, 134.15, 132.00, 127.10, 119.98, 112.63, 57.71, 55.47, 51.51, 33.74, 24.87, 23.17, 19.49, 13.50.

MS (MALDI-TOF): m/z = 1265.6 [M-Br]+ (calcd. 1265.63).

Compound 18

1H NMR(300 MHz, DMSO-d$_6$, δ): 9.00 (m, 8H), 8.14 (m, 6H), 7.69-7.78 (m, 8H), 4.07 (s, 6H), 3.51 (s, 6H), 3.36 (m, 16H), 2.98-3.09 (m, 4H), 2.34 (m, 4H), 1.61-1.68 (m, 12H), 1.26-1.35 (m, 12H), 0.83-0.92 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 161.27, 159.72, 146.58, 140.61, 138.65, 135.36, 134.15, 132.01, 127.08, 119.95, 57.70, 55.61, 51.67, 46.42, 33.75, 25.20, 23.16, 19.52, 13.54.

MS (MALDI-TOF): m/z = 1325.7 [M-Br]+ (calcd. 1325.65).

Compound 19

1H NMR(300 MHz, DMSO-d$_6$, δ): 9.00 (m, 8H), 8.13 (m, 4H), 7.77 (m, 4H), 6.59 (m, 4H), 3.87
(s, 6H), 3.30-3.50 (m, 28H), 2.92-3.00 (m, 4H), 2.22-2.34 (m, 4H), 1.60-1.71 (m, 12H), 1.28-1.37 (m, 12H), 0.87-0.96 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 161.21, 159.73, 146.59, 140.21, 138.88, 135.57, 131.99, 127.11, 119.96, 57.69, 55.67, 51.65, 46.42, 33.74, 25.12, 23.15, 19.49, 13.53.

MS (MALDI-TOF): m/z = 1385.7 [M-Br]$^+$ (calcd. 1385.67).

Compound 20

1H NMR (300 MHz, DMSO-d$_6$, δ): 8.98 (m, 8H), 8.14 (m, 6H), 7.78 (m, 8H), 4.07 (s, 6H), 3.51 (s, 6H), 3.41 (m, 16H), 2.96-3.01 (m, 4H), 2.25 (m, 4H), 1.01-1.23 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 162.03, 159.74, 146.60, 140.40, 138.95, 134.12, 131.93, 127.29, 119.92, 57.77, 55.57, 52.20, 45.35, 34.32, 23.03, 8.58.

MS (MALDI-TOF): m/z = 1159.5 [M-Br]$^+$ (calcd. 1159.46).

Compound 21

1H NMR (300 MHz, DMSO-d$_6$, δ): 9.00 (m, 8H), 8.14 (m, 6H), 7.70-7.78 (m, 8H), 4.08 (s, 6H), 3.52 (s, 6H), 3.36 (m, 16H), 3.10 (m, 4H), 2.35 (m, 4H), 1.61-1.68 (m, 12H), 1.27-1.37 (m, 36H), 0.83-0.93 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 161.30, 159.74, 146.60, 140.68, 138.67, 134.17, 131.97, 127.12, 119.95, 57.83, 55.63, 52.02, 45.03, 33.80, 32.21, 30.74, 25.56, 21.99, 21.10, 13.86.

MS (MALDI-TOF): m/z = 1493.8 [M-Br]$^+$ (calcd. 1493.84).

Compound 22

1H NMR (300 MHz, DMSO-d$_6$, δ): 8.93 (m, 8H), 8.20 (m, 4H), 7.73 (m, 4H), 6.59 (m, 4H), 4.12 (s, 6H), 3.25-3.45 (m, 28H), 2.83-3.10 (m, 4H), 1.47-1.72 (m, 20H), 1.23-1.37 (m, 20H), 0.85-0.88 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 160.97, 159.74, 146.27, 140.00, 138.75, 134.13, 131.49, 128.84, 128.15, 124.33, 57.67, 54.88, 51.96, 46.72, 34.62, 31.97, 30.59, 28.10, 25.67, 25.45, 25.36, 21.90, 21.01, 13.81.

MS (MALDI-TOF): m/z = 1716.9 [M-Br]$^+$ (calcd. 1716.87).

Synthesis of compounds 1j-1o

Compound 1j was obtained as reported.3 To a stirred solution of AgNO$_3$ (4.5 mmol) in ethanol (20.0 mL) and acetone (20.0 mL), compound 17 (1.0 mmol) was added quickly. The reaction mixture was stirred for 12 h in dark at room temperature. After the solvent was removed by a rotary evaporator, the residue was dissolved by CH$_2$Cl$_2$ (10.0 mL), then filtered, the filtrate was
concentrated under vacuum to give a purple product and the yield was 98%. Similar experiments were carried out in the preparation of compounds 1k-1o.

Compound 1j

1H NMR (300 MHz, DMSO-d$_6$, δ): 9.00 (m, 8H), 8.12 (m, 8H), 7.71 (m, 4H), 7.42 (m, 4H), 4.06 (s, 6H), 3.41 (m, 16H), 0.87-0.99 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 159.31, 146.61, 140.70, 135.21, 134.20, 132.06, 127.13, 120.06, 112.66, 57.68, 55.46, 51.85, 33.76, 25.06, 23.11, 19.36, 13.48.

MS (MALDI-TOF): m/z = 1275.7 [M-NO$_3$]$^+$ (calcd. 1275.72).

Compound 1k

1H NMR (300 MHz, DMSO-d$_6$, δ): 9.00 (m, 8H), 8.14 (m, 6H), 3.41 (m, 16H), 0.86-0.98 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 161.37, 159.75, 146.64, 140.71, 138.63, 135.38, 134.20, 132.03, 127.11, 120.06, 57.62, 55.57, 51.85, 46.59, 33.76, 25.04, 23.10, 19.35, 13.56.

MS (MALDI-TOF): m/z = 1335.7 [M-NO$_3$]$^+$ (calcd. 1335.74).

Compound 1l

1H NMR (300 MHz, DMSO-d$_6$, δ): 9.04 (m, 8H), 8.14-8.36 (m, 8H), 7.75 (m, 4H), 3.87 (s, 6H), 3.35-3.56 (m, 28H), 2.95-3.05 (m, 4H), 2.22-2.37 (m, 4H), 1.55-1.70 (m, 12H), 1.28-1.37 (m, 12H), 0.87-0.98 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 161.25, 159.76, 146.67, 140.75, 138.70, 134.23, 132.10, 127.32, 120.08, 57.70, 55.69, 51.86, 46.60, 33.78, 25.05, 23.13, 19.36, 13.57.

MS (MALDI-TOF): m/z = 1395.8 [M-NO$_3$]$^+$ (calcd. 1395.76).

Compound 1m

1H NMR (300 MHz, DMSO-d$_6$, δ): 8.98 (m, 8H), 8.14 (m, 6H), 7.78 (m, 8H), 4.07 (s, 6H), 3.51 (s, 6H), 3.41 (m, 16H), 2.96-3.01 (m, 4H), 2.25 (m, 4H), 1.01-1.23 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 162.18, 159.79, 146.70, 140.60, 134.21, 132.00, 127.32, 120.04, 58.10, 55.63, 52.16, 45.95, 33.87, 25.11, 8.63.

MS (MALDI-TOF): m/z = 1167.6 [M-NO$_3$]$^+$ (calcd. 1167.55).

Compound 1n

1H NMR (300 MHz, DMSO-d$_6$, δ): 9.00 (m, 8H), 8.14 (m, 6H), 7.71-7.79 (m, 8H), 4.08 (s, 6H),
3.51 (s, 6H), 3.36 (m, 16H), 3.10 (m, 4H), 2.35 (m, 4H), 1.53-1.68 (m, 12H), 1.25-1.40 (m, 36H),
0.78-0.92 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 161.32, 159.76, 146.62, 140.72, 138.67,
134.18, 131.95, 127.11, 120.04, 57.83, 55.59, 52.03, 45.00, 33.79, 32.21, 30.72, 25.54, 21.97,
21.05, 13.83.

MS (MALDI-TOF): m/z = 1503.9 [M-NO$_3$]$^+$ (calcd. 1503.93).

Compound 1o

1H NMR (300 MHz, DMSO-d$_6$, δ): 8.94 (m, 8H), 8.20 (m, 4H), 7.75 (m, 4H), 6.62 (m, 4H), 4.11
(s, 6H), 3.25-3.45 (m, 28H), 2.83-3.10 (m, 4H), 1.47-1.72 (m, 20H), 1.23-1.37 (m, 20H), 0.85-
0.88 (m, 18H). 13C NMR (75 MHz, DMSO-d$_6$, δ): 161.27, 159.72, 146.58, 140.61, 138.65, 134.15,
132.01, 128.96, 128.23, 127.08, 57.67, 55.61, 52.00, 46.42, 34.59, 30.67, 30.56, 28.08, 25.56,
25.43, 22.97, 21.86, 20.96, 13.77.

MS (MALDI-TOF): m/z = 1588.0 [M-NO$_3$]$^+$ (calcd. 1588.02).

3. 1H NMR spectra of the copolymer
4. 1H NMR and ^{13}C NMR spectra of the complexes 1o

Figure S2. 1H NMR spectrum of the compound 1o in DMSO-d_6.

Figure S3. ^{13}C NMR spectrum of the compound 1o in DMSO-d_6.
3. Depolymerization of copolymers at ambient temperature

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (h)</th>
<th>Selectivity (%PPC)(^b,c)</th>
<th>Carbonate linkage (%)(^c)</th>
<th>(M_n) (kg mol(^{-1}))(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>91.6</td>
<td>96.1</td>
<td>35.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>89.1</td>
<td>95.7</td>
<td>33.4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>88.6</td>
<td>95.5</td>
<td>28.7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>84.4</td>
<td>95.0</td>
<td>22.8</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>82.6</td>
<td>94.4</td>
<td>16.8</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>72.8</td>
<td>93.4</td>
<td>15.0</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>69.9</td>
<td>92.7</td>
<td>14.3</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>65.6</td>
<td>92.5</td>
<td>13.3</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>64.9</td>
<td>92.4</td>
<td>13.1</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>62.5</td>
<td>92.3</td>
<td>12.9</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>61.4</td>
<td>92.2</td>
<td>12.7</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>61.0</td>
<td>92.1</td>
<td>12.7</td>
</tr>
</tbody>
</table>

\(^a\) The copolymers were placed in a 25 °C thermostats and an air atmosphere. \(^b\) Selectivity for PPC over PC. \(^c\) Determined by \(^1\)H NMR spectroscopy. \(^d\) Determined by GPC in CH\(_2\)Cl\(_2\) at 25 °C, calibrated with polystyrene standards.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (h)</th>
<th>Selectivity (%PPC)(^b,c)</th>
<th>Carbonate linkage (%)(^c)</th>
<th>(M_n) (kg mol(^{-1}))(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>91.6</td>
<td>96.1</td>
<td>35.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>91.2</td>
<td>95.6</td>
<td>35.5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>90.9</td>
<td>95.2</td>
<td>35.6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>91.0</td>
<td>95.5</td>
<td>35.5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>91.1</td>
<td>95.2</td>
<td>35.5</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>90.4</td>
<td>95.6</td>
<td>35.9</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>92.3</td>
<td>95.8</td>
<td>36.1</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>91.3</td>
<td>95.2</td>
<td>34.9</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>93.2</td>
<td>95.6</td>
<td>34.9</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>93.5</td>
<td>95.5</td>
<td>34.3</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>93.2</td>
<td>95.1</td>
<td>33.9</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>93.4</td>
<td>95.5</td>
<td>34.6</td>
</tr>
</tbody>
</table>

\(^a\) The copolymers were placed in a 25 °C thermostats and an air atmosphere. \(^b\) Selectivity for PPC over PC. \(^c\) Determined by \(^1\)H NMR spectroscopy. \(^d\) Determined by GPC in CH\(_2\)Cl\(_2\) at 25 °C, calibrated with polystyrene standards.
