Supplementary Information

Organophosphate-Catalyzed Bulk Ring-Opening Polymerization as an Environmentally Benign Route Leading to Block Copolyesters, End-Functionalized Polyesters, and Polyester-Based Polyurethane

Tatsuya Saito, Yusuke Aizawa, Kenji Tajima, Takuya Isono and Toshifumi Satoh*

a Graduate School of Chemical Sciences and Engineering, Hokkaido University,
Sapporo, 060-8628, Japan

b Division of Biotechnology and Macromolecular Chemistry, Faculty of Engineering,
Hokkaido University, Sapporo 060-8628, Japan
Figure S1. 1H NMR spectrum of PCL in CDCl$_3$ (run 1 in Table 1).
Figure S2. (a) MALDI-TOF MS spectrum of PCL (run 1 in Table 1), (b) expanded spectrum (ranging from 4,400 to 4,800), and (c) theoretical molar mass values.
Figure S3. SEC trace of the obtained PCL initiated from H$_2$O (eluent, CHCl$_3$; flow rate, 1.0 mL min$^{-1}$).
Figure S4. (a) MALDI-TOF MS spectrum of the PCL initiated from H$_2$O, (b) expanded spectrum (ranging from 3,200 to 3,500), and (c) theoretical molar mass values and expected structures.
Figure S5. 1H NMR spectrum of PVL in CDCl$_3$ (run 13 in Table 2).
Figure S6. (a) MALDI-TOF MS spectrum of PVL (run 13 in Table 2), (b) expanded spectrum (ranging from 4,000 to 4,300), and (c) theoretical molar mass values.
Figure S7. 1H NMR spectrum of PDXO in CDCl$_3$ (run 16 in Table 2).
Figure S8. (a) MALDI-TOF MS spectrum of PDXO, (b) expanded spectrum (ranging from 3,000 to 3,400), and (c) theoretical molar mass values (run 16 in Table 2).
Figure S9. 1H NMR spectrum of PTMC in CDCl$_3$ (run 19 in Table 2).
Figure S10. SEC traces of (A) the obtained PCLs, (B) PVLs, (C) PDXOs, and (D) PTMCs with the $[M]/[PPA]$ ratios of (a) 100/1, (b) 50/1, and (c) 25/1 (eluent, CHCl$_3$; flow rate, 1.0 mL min$^{-1}$).
Figure S11. SEC trace of the PLLA obtained from run 21 in Table 2 (eluent, CHCl₃; flow rate, 1.0 mL min⁻¹).

Figure S12. ¹H NMR spectrum of PLLA in CDCl₃ (run 21 in Table 2)
Figure S13. 1H NMR spectrum of PLLA methane resonances with selective decoupling of PLLA methyl resonances (run 21 in Table 2).
Figure S14. (a) MALDI-TOF MS spectrum of PLLA (run 21 in Table 2), (b) expanded spectrum (ranging from 4,900 to 5,300), and (c) theoretical molar mass values.
Figure S15. (a); Kinetic plots for the DPP-catalyzed bulk ROP of \(\varepsilon \)-CL with \([\varepsilon \text{-CL}]_0/[\text{PPA}]_0/[\text{DPP}]_0 = 50/1/0.05\), and (b); dependence of \(M_{n,\text{NMR}} \) (●), \(D_M \) (□) and \(M_{n,\text{th.}} \) (dotted line) on monomer conversion (conv.).

Figure S16. (a); Kinetic plots for the DPP-catalyzed bulk ROP of TMC with \([\text{TMC}]_0/[\text{PPA}]_0/[\text{DPP}]_0 = 50/1/0.05\), and (b); dependence of \(M_{n,\text{NMR}} \) (●), \(D_M \) (□) and \(M_{n,\text{th.}} \) (dotted line) on monomer conversion (conv.).
Table S1. Block copolymerization of ε-CL, δ-VL, DXO, and TMC catalyzed by DPP in the bulk \(^a\)

<table>
<thead>
<tr>
<th>run</th>
<th>monomer (M)</th>
<th>[M](_0)/[PPA](_0)</th>
<th>time</th>
<th>conv. (%) (^b)</th>
<th>(M_{n,\text{th.}}) (^b)</th>
<th>(M_{n,\text{NMR}}) (^c)</th>
<th>(D_{M}) (^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>first ε-CL</td>
<td>25/1</td>
<td>90min</td>
<td>94.7</td>
<td>2,800</td>
<td>2,800</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>second δ-VL</td>
<td>25/1</td>
<td>20min</td>
<td>78.6</td>
<td>4,800 (^e)</td>
<td>5,000</td>
<td>1.13</td>
</tr>
<tr>
<td>32</td>
<td>first TMC</td>
<td>25/1</td>
<td>560min</td>
<td>96.0</td>
<td>2,600</td>
<td>2,500</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>second δ-VL</td>
<td>25/1</td>
<td>20min</td>
<td>78.4</td>
<td>4,500</td>
<td>4,800</td>
<td>1.13</td>
</tr>
<tr>
<td>33</td>
<td>first δ-VL</td>
<td>25/1</td>
<td>15min</td>
<td>97.1</td>
<td>2,700</td>
<td>2,600</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>second ε-CL</td>
<td>25/1</td>
<td>125min</td>
<td>88.0</td>
<td>5,100 (^e)</td>
<td>5,200</td>
<td>1.15</td>
</tr>
<tr>
<td>34</td>
<td>first DXO</td>
<td>25/1</td>
<td>210min</td>
<td>97.2</td>
<td>3,000</td>
<td>3,100</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>second ε-CL</td>
<td>25/1</td>
<td>130min</td>
<td>90.1</td>
<td>5,500 (^e)</td>
<td>6,000</td>
<td>1.16</td>
</tr>
</tbody>
</table>

\(^a\) Polymerization conditions: atmosphere, Ar; temperature, 80 °C. \(^b\) Determined by \(^1\)H NMR spectrum of the obtained polymer in CDCl\(_3\). \(^c\) Calculated from \([M_1]_0/[PPA]_0 \times \text{conv.} \times (\text{M.W. of } M_1) + (\text{M.W. of PPA})\). \(^d\) Determined by SEC measurement of the obtained polymer in CHCl\(_3\). \(^e\) Calculated from \([M_2]_0/[PPA]_0 \times \text{conv.} \times (\text{M.W. of } M_2) + (M_{n,\text{NMR}} \text{ of the polymer obtained from first polymerization})\).
Figure S17. SEC traces of PCL obtained from the 1st polymerization and PCL-\(b\)-PVL (eluent, CHCl\(_3\); flow rate, 1.0 mL min\(^{-1}\)).

Figure S18. \(^1\)H NMR spectrum of PCL-\(b\)-PVL in CDCl\(_3\) (run 31 in Table S1).
Figure S19. SEC traces of PTMC obtained from the 1st polymerization and PTMC-b-PVL (eluent, CHCl₃; flow rate, 1.0 mL min⁻¹).

Figure S20. ¹H NMR spectrum of PTMC-b-PVL in CDCl₃ (run 32 in Table S1).
Figure S21. SEC traces of PVL obtained from the 1st polymerization and PVL-\textit{b}-PCL (eluent, CHCl$_3$; flow rate, 1.0 mL min$^{-1}$).

Figure S22. 1H NMR spectrum of PVL-\textit{b}-PCL in CDCl$_3$ (run 33 in Table S1).
Figure S23. SEC traces of PDXO obtained from the 1st polymerization and PDXO-b-PCL (eluent, CHCl$_3$; flow rate, 1.0 mL min$^{-1}$).

Figure S24. 1H NMR spectrum of PDXO-b-PCL in CDCl$_3$ (run 34 in Table S1).
Figure S25. 1H NMR spectrum of N$_3$-PCL in CDCl$_3$ (run 22 in Table 3).

Figure S26. 1H NMR spectrum of MI-PCL in CDCl$_3$ (run 23 in Table 3).
Figure S27. 1H NMR spectrum of N$_3$-PTMC in CDCl$_3$ (run 24 in Table 3).

Figure S28. 1H NMR spectrum of MI-PTMC in CDCl$_3$ (run 25 in Table 3).
Figure 29. 1H NMR spectrum of PCL-diol in CDCl$_3$ (run 26 in Table 3).

Figure S30. 1H NMR spectrum of PCL-triol in CDCl$_3$ (run 27 in Table 3).
Figure S31. 1H NMR spectrum of PCL-tetraol in CDCl$_3$ (run 28 in Table 3).

Figure S32. SEC traces of the obtained polymer in CHCl$_3$ (solid line, run 28; chained line, run 29; dotted line, run 30).
Figure S33. FT-IR spectrum of the obtained PCL-based polyurethane in the presence of DPP.

Figure S34. SEC traces of the obtained PCL-based polyurethane in the presence of DPP; dotted line and in the absence of DPP; solid line (eluent, CHCl₃; flow rate, 1.0 mL min⁻¹).
One-pot synthesis of PCL-\textit{b}-PVL.

\(\varepsilon \)-CL (0.570 mL, 5.00 mmol), PPA (27.2 \(\mu \)L, 200 \(\mu \)mol) and DPP (2.50 mg, 10.0 \(\mu \)mol) were placed in a reaction vessel, which was sealed under an argon atmosphere. The reaction mixture was stirred at 80 °C in an oil bath. After 90 min, we obtained a portion of the reaction mixture for SEC measurement and \(^1 \)H NMR measurement, then \(\varepsilon \)-VL (0.453 mL, 5.00 mmol) was added to the reaction mixture. The polymerization was quenched by adding Amberlyst® A21. The reaction mixture was purified by reprecipitation from CH\(_2\)Cl\(_2\) solution into cold methanol/\(n \)-hexane (\(v/v = 9/1 \)) to give the PCL-\textit{b}-PVL (812 mg) as a white solid. Yield, 84.6%. \(M_{\text{a, NMR}} = 5,000; M_{\text{a, SEC}} = 8,700, D_M = 1.13. \)

\(^1 \)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) (ppm) 1.37 (m, 2H \(\times \) \(n \), (-CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(n \)), 1.57-1.75 (m, 2H \(\times \) \(n \), (-CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(n \))), 2H \(\times \) \(n \), (-COCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(n \))), 2H \(\times \) \(m \), (-COCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 1.95 (m, 2H, ArCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 2.26-2.40 (m, 2H \(\times \) \(n \), (-CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 2H \(\times \) \(n \), (-COCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \))), 2.69 (t, 2H, \textit{J} = 7.8 Hz, ArCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)) 3.65 (m, 2H,CH\(_3\)OH), 4.02-4.13 (m, 2H \(\times \) \(n \), (-CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(n \))), 2H \(\times \) \(m \), (-OCH\(_2\)CH\(_2\)CH\(_2\)O-\(n \)), 2.72 (t, 2H, \textit{J} = 7.8 Hz, ArCH\(_2\)CH\(_2\)CH\(_2\)O-\(n \)), 3.65 (m, 2H, -CH\(_3\)OH), 4.08 (m, 2H \(\times \) \(m \), (-OCH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 4.13-4.30 (m, 2H \(\times \) \(n \), (-OCH\(_2\)CH\(_2\)CH\(_2\)O-\(n \))), 2H \(\times \) \(n \), (-OCH\(_2\)CH\(_2\)CH\(_2\)O-\(n \)), 7.16-7.32 (m, 5H, aromatic).

The syntheses of PTMC-\textit{b}-PVL, PVL-\textit{b}-PCL, and PDXO-\textit{b}-PCL were performed using similar process.

PTMC-\textit{b}-PVL: Yield, 88.0%. \(M_{\text{a, NMR}} = 4,800; M_{\text{a, SEC}} = 7,500, D_M = 1.13. \)

\(^1 \)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) (ppm) 1.57-1.78 (m, 2H \(\times \) \(m \), (-CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 2H \(\times \) \(m \), (-CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \))), 1.96-2.12 (m, 2H \(\times \) \(n \), (-OCH\(_2\)CH\(_2\)CH\(_2\)O-\(m \))), 2H, ArCH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 2.34 (m, 2H \(\times \) \(m \), (-COCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \))), 2.72 (t, 2H, \textit{J} = 7.8 Hz, ArCH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 3.65 (m, 2H, -CH\(_3\)OH), 4.08 (m, 2H \(\times \) \(m \), (-OCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 4.13-4.30 (m, 2H \(\times \) \(n \), (-OCH\(_2\)CH\(_2\)CH\(_2\)O-\(n \))), 2H \(\times \) \(n \), (-OCH\(_2\)CH\(_2\)CH\(_2\)O-\(n \)), 2H, ArCH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 7.16-7.32 (m, 5H, aromatic).

PVL-\textit{b}-PCL: Yield, 74.1%. \(M_{\text{a, NMR}} = 5,200; M_{\text{a, SEC}} = 7,000, D_M = 1.15. \)

\(^1 \)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) (ppm) 1.38 (m, 2H \(\times \) \(m \), (-CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 1.58-1.75 (m, 2H \(\times \) \(n \), (-COCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \))), 2H \(\times \) \(n \), (-COCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(n \))), 2H \(\times \) \(m \), (-CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 1.96 (m, 2H, ArCH\(_2\)CH\(_2\)O-\(m \)), 2.27-2.40 (m, 2H \(\times \) \(n \), (-COCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(n \))), 2H \(\times \) \(m \), (-COCH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)O-\(m \)), 2.69 (t, 2H, \textit{J} = 7.6 Hz, ArCH\(_2\)CH\(_2\)O-\(m \)), 7.16-7.32 (m, 5H, aromatic).
3.65 (t, 2H, J = 6.4 Hz, -CH₂OH), 4.02-4.12 (m, 2H × n, (-COCH₂CH₂CH₂O⁻)ₙ; 2H × (m-I), (-CH₂CH₂CH₂CH₂CH₂O⁻)ₘ₋₁; 2H, ArCH₂CH₂CH₂⁻), 4.20 (t, 2H × n, J = 4.8 Hz, (-COCH₂CH₂OCH₂CH₂⁻)ₙ), 7.15-7.31 (m, 5H, aromatic).

PDXO-b-PCL: Yield, 5.5%. Mₐ,NMR = 6,000; Mₐ,SEC = 5,200, Dₐ = 1.16. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.38 (m, 2H × m, (-CH₂CH₂CH₂CH₂CH₂⁻)ₘ); 1.58-1.71 (m, 2H × m, (-CH₂CH₂CH₂O⁻)ₘ; 2H × m, (-COCH₂CH₂CH₂⁻)ₘ), 1.97 (m, 2H × m, ArCH₂CH₂⁻), 2.28 (m, 2H × m, (-COCH₂CH₂CH₂⁻)ₘ), 2.56-2.72 (m, 2H × n, (-COCH₂CH₂O⁻)ₙ; 2H, ArCH₂CH₂⁻), 3.62-3.71 (m, 2H × n, (-COCH₂CH₂OCH₂⁻)ₙ), 4.01-4.11 (m, 2H × (m-I), (-CH₂CH₂CH₂O⁻)ₘ₋₁; 2H, ArCH₂CH₂CH₂⁻), 4.20 (t, 2H × n, J = 4.8 Hz, (-COCH₂CH₂OCH₂CH₂⁻)ₙ), 7.13-7.29 (m, 5H, aromatic).

Syntheses of functional PCLs with various initiators.

N₃-PCL: Procedure A was used for the ROP of ε-CL (1.120 mL, 10.0 mmol) in the presence of AHA (28.6 mg, 200 μmol) and DPP (2.50 mg, 10.0 μmol) for 420 min to give N₃-PCL (740 mg) as a white solid. Yield, 69.9%. Mₐ,NMR = 5,500; Mₐ,SEC = 12,700, Dₐ = 1.11. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.31-1.41 (m, 2H × n, (-CH₂CH₂CH₂CH₂CH₂⁻)ₙ; 4H, N₃CH₂CH₂CH₂CH₂⁻), 1.55-1.69 (m, 2H × n, (-CH₂CH₂CH₂O⁻)ₙ; 2H × n, (-COCH₂CH₂CH₂⁻)ₙ; 4H, N₃CH₂CH₂CH₂CH₂⁻), 2.31 (t, 2H × n, J = 7.6 Hz, (-COCH₂CH₂⁻)ₙ), 3.28 (t, 2H, J = 7.0 Hz, N₃CH₂⁻), 3.63 (m, 2H, -CH₂CH₂OH), 4.01-4.09 (m, 2H × (n-I), (-CH₂CH₂O⁻)ₙ₋₁; 2H, N₃CH₂CH₂CH₂CH₂CH₂⁻).

MI-PCL: Procedure A was used for the ROP of ε-CL (1.120 mL, 10.0 mmol) in the presence of HEMI (28.2 mg, 200 μmol) and DPP (2.50 mg, 10.0 μmol) for 450 min to give MI-PCL (779 mg) as a white solid. Yield, 73.2%. Mₐ,NMR = 5,500; Mₐ,SEC = 13,400, Dₐ = 1.15. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 1.36 (m, 2H × n, (-CH₂CH₂CH₂CH₂CH₂⁻)ₙ), 1.58-1.71 (m, 2H × n, (-CH₂CH₂CH₂O⁻)ₙ; 2H × n, (-COCH₂CH₂CH₂⁻)ₙ), 2.29 (t, 2H × n, J = 8.2 Hz, (-COCH₂CH₂⁻)ₙ), 3.64 (m, 2H, -CH₂CH₂OH), 3.79 (t, 2H, J = 5.4 Hz, -NCH₂⁻), 4.06 (t, 2H × (n-I), J = 6.6 Hz, (-CH₂CH₂O⁻)ₙ₋₁), 4.23 (t, 2H, J = 5.2 Hz, -NCH₂CH₂⁻), 6.74 (s, 2H, -COCHCHCO⁻).
PCL-diol: Procedure A was used for the ROP of ε-CL (1.120 mL, 10.0 mmol) in the presence of 1,3-propanediol (14.3μL, 200 μmol) and DPP (2.50 mg, 10.0 μmol) for 180 min to give PCL-diol (776 mg) as a white solid. Yield, 75.5%. $M_{n,NMR} = 5,100$; $M_{n,SEC} = 11,400$, $D_M = 1.13$. 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 1.36 (m, 2H × n, -(CH$_2$CH$_2$CH$_2$CH$_2$-)$_{n/2}$ × 2). 1.58-1.71 (m, 2H × n, -(CH$_2$CH$_2$CH$_2$O-)$_{n/2}$ × 2; 2H × n, -(COCH$_2$CH$_2$CH$_2$-)$_{n/2}$ × 2), 1.97 (m, 2H, -OCH$_2$CH$_2$CH$_2$O-), 2.29 (t, 2H × n, $J = 8.2$ Hz, -(COCH$_2$CH$_2$-)$_{n/2}$ × 2), 3.63 (t, 2H × 2, $J = 6.4$ Hz, -CH$_2$CH$_2$OH) 4.06 (t, 2H × (n-1), $J = 6.6$ Hz, -(CH$_2$CH$_2$O-)$_{(n-1)/2}$ × 2). 4.15 (t, 4H, $J = 6.2$ Hz, -OCH$_2$CH$_2$CH$_2$O-).

PCL-triol: Procedure A was used for the ROP of ε-CL (1.120 mL, 10.0 mmol) in the presence of trimethylolpropane (26.8 mg, 200 μmol) and DPP (2.50 mg, 10.0 μmol) for 150 min to give PCL-triol (666 mg) as a white solid. Yield, 66.1%. $M_{n,NMR} = 5,200$; $M_{n,SEC} = 11,500$, $D_M = 1.07$. 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 0.89 (t, 3H, $J = 7.4$ Hz, CH$_3$CH$_2$), 1.36 (m, 2H × n, -(CH$_2$CH$_2$CH$_2$CH$_2$-)$_{n/3}$ × 3), 1.55-1.72 (m, 2H, CH$_3$CH$_2$-; 2H × (n-1), -(CH$_2$CH$_2$CH$_2$O-)$_{n/3}$ × 3; 2H × n, -(COCH$_2$CH$_2$CH$_2$-)$_{n/3}$ × 3), 2.31 (m, 2H × n, -(OCOCH$_2$CH$_2$CH$_2$-)$_{n/3}$ × 3), 3.65 (m, 6H, -CH$_2$CH$_2$OH × 3), 4.01 (s, 6H, C(CH$_2$O-)$_3$), 4.06 (t, 2H × (n-1), $J = 6.6$ Hz, -(CH$_2$CH$_2$O-)$_{(n-1)/3}$ × 3).

PCL-tetraol: Procedure A was used for the ROP of ε-CL (2.240 mL, 20.0 mmol) in the presence of pentaerythritol (27.2 mg, 200 μmol) and DPP (2.50 mg, 10.0 μmol) for 430 min to give PCL-tetraol (1.07 g) as a white solid. Yield, 48.2%. $M_{n,NMR} = 10,600$; $M_{n,SEC} = 16,900$, $D_M = 1.07$. 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 1.37 (m, 2H × n, -(CH$_2$CH$_2$CH$_2$CH$_2$-)$_{n/4}$ × 4), 1.54-1.73 (m, 2H × n, -(CH$_2$CH$_2$CH$_2$O-)$_{n/4}$ × 4; 2H × n, -(COCH$_2$CH$_2$CH$_2$-)$_{n/4}$ × 4), 2.32 (m, 2H × n, -(OCOCH$_2$CH$_2$-)$_{n/4}$ × 4), 3.65 (t, 8H, $J = 6.6$ Hz, -CH$_2$CH$_2$OH × 4) 4.06 (t, 2H × (n-1), $J = 6.6$ Hz, -(CH$_2$CH$_2$O-)$_{(n-1)/4}$ × 4), 4.11 (s, 8H, C(CH$_2$CO-)$_4$).
Syntheses of functional PTMCs with various initiators.

N$_3$-PTMC: Procedure A was used for the ROP of TMC (510 mg, 5.00 mmol) in the presence of AHA (14.3 mg, 100 μmol) and DPP (1.2 mg, 0.50 μmol) for 19 h to give N$_3$-PTMC (379 mg) as a colorless waxy solid. Yield, 84.1%. $M_{n,NMR} = 4,500$; $M_{n,SEC} = 5,600$, $D_M = 1.09$. 1H NMR (CDCl$_3$, 400MHz): δ (ppm) 1.42 (m, 4H, N$_3$CH$_2$CH$_2$CH$_2$CH$_2$-), 1.92 (m, 2H, N$_3$CH$_2$CH$_2$CH$_2$CH$_2$H$_2$-), 2.01-2.11 (m, 2H, N$_3$CH$_2$CH$_2$H$_2$-; 2H × (n-1)), 3.28 (t, 2H, $J = 7.0$ Hz, N$_3$CH$_2$H$_2$-), 3.74 (m, 2H, -CH$_2$OH), 4.21-4.27 (m, 2H, N$_3$CH$_2$CH$_2$CH$_2$CH$_2$CH$_2$-; 4H × (n-1), (-OCH$_2$CH$_2$H$_2$O-)$_{n-1}$; 2H, -CH$_2$CH$_2$CH$_2$OH).

MI-PTMC: Procedure A was used for the ROP of TMC (510 mg, 5.00 mmol) in the presence of HEMI (14.1 mg, 100 μmol) and DPP (1.2 mg, 0.50 μmol) for 19 h to give MI-PTMC (429 mg) as a colorless waxy solid. Yield, 89.7%. $M_{n,NMR} = 4,700$; $M_{n,SEC} = 6,400$, $D_M = 1.13$. 1H NMR (CDCl$_3$, 400MHz): δ (ppm) 1.92 (m, 2H, -CH$_2$CH$_2$OH), 2.00-2.13 (m, 2H × (n-1), (-OCH$_2$CH$_2$H$_2$-)$_{n-1}$), 3.74 (m, 2H, -CH$_2$OH), 3.85 (t, 2H, $J = 5.4$ Hz -NCH$_2$CH$_2$-), 4.21-4.29 (m, 2H, -NCH$_2$CH$_2$-; 4H × n-1, (-OCH$_2$CH$_2$H$_2$O-)$_{n-1}$; 2H, -CH$_2$CH$_2$CH$_2$OH), 6.74 (s, 2H, -COCHCHCO-).