Nanoparticles of poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer for pH-triggered release of paclitaxel

a. Institute of Macromolecular Chemistry, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
b. Laboratory for Soft Matter Electron Microscopy, Bayreuth Institute of Macromolecular Research, University of Bayreuth, D-95440 Bayreuth, Germany.
c. Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, D-21502 Geesthacht, Germany.
d. Centre de Recherches Paul-Pascal, CNRS, Université de Bordeaux, 115 Avenue Schweitzer, F-33600 Pessac, France.

Email: ajager@imc.cas.cz, jager@imc.cas.cz and rodriguez@imc.cas.cz
Tel: +420 296 809 322;
Characterization of PHPMA

Figure S1A. SEC traces of the PHPMA macroCTA chain transfer agent utilized as macromolecular chain transfer agent for block copolymer synthesis via RAFT.

Figure S1B. 1H NMR spectra of the PHPMA in D$_2$O.
Figure S2A. SEC traces of the PHPMA₂₅-b-PDPA₁₀₆ block copolymer synthesized via RAFT.

Figure S2B. ¹H NMR spectra of the PHPMA₂₅-b-PDPA₁₀₆ in D2O/DCI (pH 2).
Fig. S3. Static light scattering measurements ($Kc/R\theta$ vs. q^2) for PHPMA$_{25}$-b-PDPA$_{106}$ block copolymer NPs in PBS at 25 °C ($R_g \sim 24$ nm and $M_w \sim 1.2 \times 10^6$ g/mol).

Fig. S4A. Cell viability of HeLa cell line after 24 h incubation with different concentrations of drug-free PHPMA$_{25}$-b-PDPA$_{106}$ block copolymer NPs.

Fig. S4B. Cell viability of HeLa cell line after 48 h incubation with different concentrations of drug-free PHPMA$_{25}$-b-PDPA$_{106}$ block copolymer NPs.
Fig. S5. Volume-weighted size distribution for the PHPMA$_{25}$-b-PDPA$_{106}$ NPs at pH 7.4 (black open circles) for the nanoparticles at pH 5.0 (red open squares) and the single block copolymer at pH 5.0 (blue dashed lines) and angle 173° at concentration of 1 mg·mL$^{-1}$ diluted in PBS at 37 °C.

Fig. S6. Drug release profiles from paclitaxel-loaded PHPMA$_{25}$-b-PDPA$_{106}$ block copolymer NPs at pH of simulated transport in blood, at pH 6.5 (end stage of protonated process) and simulating the acidic environment in endosomal and lysosomal compartments at 37 °C.
Supporting Table ST1. Synthetic parameters and molecular weight data of polymers prepared via RAFT polymerization.

<table>
<thead>
<tr>
<th>Sample</th>
<th>[M][/CTA][/I]</th>
<th>Time (h)</th>
<th>Conv. (%)</th>
<th>M_{calc}b</th>
<th>M_{SEC}c</th>
<th>Dc</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPMA25</td>
<td>120/2/1e</td>
<td>10</td>
<td>36</td>
<td>3 200</td>
<td>3 600†</td>
<td>1.07†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2 900)</td>
<td>(1.22)</td>
<td></td>
</tr>
<tr>
<td>PHPMA25-PDPA106</td>
<td>300/3/1f</td>
<td>15</td>
<td>94</td>
<td>23 500</td>
<td>26 200</td>
<td>1.29</td>
</tr>
</tbody>
</table>

- Determined by 1H NMR in D$_2$O.
- Theoretical $M_n = [M][/CTA]_0 \times \text{conv.} \times \text{MW}_{\text{mon.}} + \text{MW}_{\text{CTA}}$
- Determined by SEC in THF/MeOH 80/20% using PMMA as standard
- Determined by SEC in acetate buffer pH 6.5 using light scattering and RI detectors
- Conditions: DMAc, [M] = 1.2 M, 70 °C
- Conditions: 1,4-dioxane/MeOH 60/40 vol.% [M] = 3 M, 70 °C