Supporting Information

Molecular Design of a Discrete Chain-folding Polyimide for Controlled Inkjet Deposition of Supramolecular Polymers

Lewis R. Hart, a Josephine L. Harries, b Barnaby W. Greenland, c Howard M. Colquhoun*a and Wayne Hayes*a

a Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, U.K. e-mail: w.c.hayes@reading.ac.uk, h.m.colquhoun@reading.ac.uk, Tel: +44 118 378 6491, Fax: +44 118 378 6331
b Domino UK Ltd, Trafalgar Way, Bar Hill, Cambridge, CB23 8TU, U.K.
c The Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, U.K.

Contents

S1: 1H NMR spectra of ethylhexyl imide-anhydride 4 ... S2
S2: 13C NMR spectra of ethylhexyl imide-anhydride 4 ... S3
S3: Mass spectra of ethylhexyl imide-anhydride 4 ... S3
S4: 1H NMR spectra of mono-Boc-protected 2,2’-(ethylenedioxy)bis(ethylamine) 6 S4
S5: 13C NMR spectra of mono-Boc-protected 2,2’-(ethylenedioxy)bis(ethylamine) 6 S4
S6: Mass spectra of mono-Boc-protected 2,2’-(ethylenedioxy)bis(ethylamine) 6 S5
S7: 1H NMR spectra of Boc-protected diimide 7 ... S5
S8: 13C NMR spectra of Boc-protected diimide 7 ... S6
S9: Mass spectra of Boc-protected diimide 7 ... S6
S10: 1H NMR spectra of amino-terminated diimide 1 .. S7
S11: 13C NMR spectra of amino-terminated diimide 1 .. S7
S12: Mass spectra of amino-terminated diimide 1 .. S8
S13: 1H NMR spectra of azide-terminated imide-acid 9 .. S8
S14: 13C NMR spectra of azide-terminated imide-acid 9 ... S9
S15: Mass spectra of azide-terminated imide-acid 9 .. S9
S16: 1H NMR spectra of azide-terminated chain-folding diimide 10 S10
S1: 1H NMR spectra of the ethylhexyl imide-anhydride 4.
S2: 13C NMR spectra of the ethylhexyl imide-anhydride 4.

S3: Mass spectra of the ethylhexyl imide-anhydride 4.
S4: 1H NMR spectra of mono-Boc-protected 2,2′-(ethylenedioxy)bis(ethylamine) 6.

S5: 13C NMR spectra of mono-Boc-protected 2,2′-(ethylenedioxy)bis(ethylamine) 6.
S6: Mass spectra of mono-Boc-protected 2,2’-(ethylenedioxy)bis(ethylamine) 6.

S7: 1H NMR spectra of Boc-protected diimide 7.
S8: 13C NMR spectra of Boc-protected diimide 7.

S10: 1H NMR spectra of the amino-terminated diimide 1.

S11: 13C NMR spectra of the amino-terminated diimide 1.
S12: Mass spectra of the amino-terminated diimide 1.

S13: 1H NMR spectra of azide-terminated imide-diacid 9.
S14: 13C NMR spectra of azide-terminated imide-diacid 9.

S15: Mass spectra of azide-terminated imide-diacid 9 in negative mode, showing the desired species and the associated dimer.
S16: 1H NMR spectra of the azide-terminated chain-folding diimide 10.

S17: 13C NMR spectra of the azide-terminated chain-folding diimide 10.
S18: Mass spectra of the azide-terminated chain-folding diimide 10.

S19: 1H NMR spectra of bis-alkyne-terminated poly(ethylene glycol) 13.
S20: 13C NMR spectra of bis-alkyne-terminated poly(ethylene glycol) 13.

S21: Mass spectra of bis-alkyne-terminated poly(ethylene glycol) 13.
S22: 1H NMR spectra of the ‘clicked’ chain-folding polydiimide 14.

S23: 13C NMR spectra of the ‘clicked’ chain-folding polydiimide 14.
S24: MALDI-TOF mass spectrometric analysis of the ‘clicked’ chain-folding polydiimide 14. The spacing between signals (44 Da) corresponds to a single repeat unit of poly(ethylene glycol).

S25: 1H NMR spectra of precursors 10 and 13 showing triazole formation through the appearance of the singlet at 7.45 ppm in the polyimide 14.
S26: UV-Vis spectra of the chain-folding polyimide 14 and pyrenyl terminated polymer 15 and on blending (14 + 15) at room temperature and -78 °C at a concentration of 3×10^{-3} M with respect to binding motifs in CHCl$_3$/TFA (9:1 v/v).

S27: Partial 1H NMR spectra of the blend between the discrete chain-folding polymer 14 and the divalent pyrenyl polymer 15 showing significant complexation only at low temperature.
S28: Fluorescence spectra of emission inactive polyimide 14 and pyrenyl terminated poly(ethylene glycol) 15 and the equimolar (with respect to the binding motifs) blend (14 + 15). Insert shows expanded region between 375 nm and 575 nm, revealing the quenching of pyrenyl emissions in the blend (14 + 15) at room temperature.

S29: a. Fujifilm Dimatix™ Materials Printer (DMP-2800), b. Dimatix™ materials cartridge containing π-electron-rich polymer and c. π-electron deficient polydiimide containing cartridge