A Rather Facile Strategy for Fabrication of PEGylation AIE Nanoprobes
Qing Wana, Ke Wangb, Huilin Dua, Hongye Huanga, Meiying Liua, Fengjie Denga, Yanfeng Daia, Xiaoyong Zhanga,* and Yen Weib,*

a Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
b Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.

Xiaoyong Zhang, Nanchang University, Email: xiaoyongzhang1980@gmail.com;
Yen Wei, Tsinghua University, Email: weiyen@tsinghua.edu.cn.
Results

Scheme S1. Schematic showing the fabrication of PEG-TPE FNPs and their utilization for bioimaging applications.

Fig. S1 The representative curve of 1H NMR demonstrating the successful synthesis of 2,2'-diaminotetraphenyl ethylene (DATPE).
Fig. S2 UV-Vis spectrum of PEG-TPE FNPs in water.

Fig. S3 (A) the PL spectra of DATPE in water/THF (V/V) mixture with different water fraction; Ex = 333 nm (10 µM). (B) The variation trend of DATPE FL intensity in water/THF mixture with different water fraction.

Fig. S4 Photographs of PEG-TPE FNPs dispersed in water (a) and
irradiated with Uv lamp at 365 nm.

Fig. S5 Photostability of PEG-TPE FNPs after irradiated with Uv lamp for 1 h (365 nm).

Fig. S6 Hydrodynamic size of PEG-TPE FNPs in water.