Electronic supplementary information for:

Multiresponsive of highly water-soluble poly(3-hexylthiophene)-block-poly(phenylisocyanide) block copolymers

Ming Su, Sheng-Yu Shi, Qian Wang, Na Liu,* Jun Yin, Chunhua Liu, Yunsheng Ding and Zong-Quan Wu*

Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, Hefei 230009, China
Fig. S1: 1H NMR spectrum of poly-1_{30} ... S3
Fig. S2: 1H NMR spectrum of poly-2_{30} ... S3
Fig. S3: 1H NMR spectrum of poly(1$_{30}$-b-2$_{60}$) .. S4
Fig. S4: FT-IR spectra of poly-1_{30}, poly-2_{30}, and poly(1$_{30}$-b-2$_{60}$) S4
Fig. S5: SEC chromatograms of P3HT-b-PPI block copolymers S5
Fig. S6: UV-vis spectra of the P3HT, PPI, and P3HT-b-PPI copolymer S6
Fig. S7: UV-vis spectra of poly(1$_{30}$-b-2$_{60}$) copolymer in mixed THF and methanol S6
Fig. S8: Photographs of poly(1$_{30}$-b-2$_{60}$) in mixed THF and methanol under UV light S7
Fig. S9: Fluorescent spectra of poly(1$_{30}$-b-2$_{60}$) copolymer in mixed THF and methanol S7
Fig. S10: DLS curve of poly(1$_{30}$-b-2$_{60}$) in THF ... S8
Fig. S11: Proposed self-assembly structure for poly(1$_{30}$-b-2$_{60}$) in water S8
Fig. S12: Emission changes of poly(1$_{30}$-b-2$_{60}$) upon alternate additions of TFA and TEA S9
Fig. S13: UV-vis spectra of P3HT in CHCl$_3$ upon alternate additions of TFA and TEA S9
Fig. S14: 1H NMR spectrum of Me-TEG-Ts in CDCl$_3$.. S10
Fig. S15: 1H NMR spectrum of compound 3 in CDCl$_3$.. S10
Fig. S16: 1H NMR spectrum of compound 4 in CDCl$_3$.. S11
Fig. S17: 1H NMR spectrum of compound 5 in CDCl$_3$.. S11
Fig. S18: 13C NMR spectrum of compound 5 in CDCl$_3$.. S12
Fig. S19: 1H NMR spectrum of compound 6 in CDCl$_3$.. S12
Fig. S20: 13C NMR spectrum of compound 6 in CDCl$_3$.. S13
Fig. S21: 1H NMR spectrum of compound 7 in CDCl$_3$.. S13
Fig. S22: 13C NMR spectrum of compound 7 in CDCl$_3$.. S14
Fig. S23: 1H NMR spectrum of monomer 2 in CDCl$_3$.. S14
Fig. S24: 13C NMR spectrum of monomer 2 in CDCl$_3$.. S15
Fig. S1 1H NMR spectrum of poly-1$_{30}$ in CDCl$_3$ at 25 °C (600 MHz).

Fig. S2 1H NMR spectrum of poly-2$_{30}$ in CDCl$_3$ at 25 °C (600 MHz).
Fig. S3 1H NMR spectrum of poly(1$_{30}$-b-2$_{60}$) in CDCl$_3$ at 25 °C (600 MHz).

Fig. S4 FT-IR Spectrum of P3HT, PPI homopolymers and P3HT-b-PPI block copolymer at 25 °C using KBr pellets.
Fig. S5 Size exclusion chromatograms of Ni(II)-terminated P3HT macroinitiators and the resulting P3HT-\(b\)-PPI block copolymers. (a) run 2, (b) run 3, (c) run 4, and (d) run 5 in Table 1 in main text.
Fig. S6 UV-vis absorption spectra of P3HT, PPI, and P3HT-\(b\)-PPI block copolymer measured in CHCl\(_3\) at 25 °C \((c = 0.05\) g/L).

Fig. S7 UV-vis spectra of P3HT-\(b\)-PPI block copolymer poly(\(1_{30}\)-\(b\)-\(2_{60}\)) in the mixed solvents of THF and methanol at 25 °C \((c = 0.05\) g/L).
Fig. S8 Photographs of P3HT-\(b\)-PPI block copolymer poly(1\(_{30}\)-\(b\)-2\(_{60}\)) in the mixed solvents of THF and methanol under UV light (365 nm) (\(c = 0.05\) g/L).

Fig. S9 Fluorescent spectra of P3HT-\(b\)-PPI block copolymer poly(1\(_{30}\)-\(b\)-2\(_{60}\)) in the mixed solvents of THF and methanol with different volume ratios at 25 °C (\(c = 0.05\) g/L).
Fig. S10 Dynamic light scattering curve of P3HT-\-b-PPI block copolymer poly(1_{30–b-2_{60}}) in THF (c = 0.1 g/L) measured at 25 °C.

Fig. S11 Proposed self-assembly structure for P3HT-\-b-PPI block copolymer poly(1_{30–b-2_{60}}) in water at 25 °C.
Fig. S12 Reversible emission changes of P3HT-\(b\)-PPI block copolymer poly(\(1_{30}-b-2_{60}\)) in CHCl\(_3\) (\(c = 0.05\) g/L) upon alternate addition of TFA (0.15 mM) and TEA (0.15 mM) at 25 °C with excitation at 365 nm.

Fig. S13 UV-vis spectra of P3HT homopolymer poly-\(1_{30}\) in CHCl\(_3\) upon alternate additions of TFA and TEA at 25 °C (\(c = 0.05\) g/L).
Fig. S14 1H NMR spectrum of Me-TEG-Ts in CDCl$_3$ at 25 °C (600 MHz).

Fig. S15 1H NMR spectrum of compound 3 in CDCl$_3$ at 25 °C (600 MHz).
Fig. S16 1H NMR spectrum of compound 4 in CDCl$_3$ at 25 °C (600 MHz).

Fig. S17 1H NMR spectrum of compound 5 in CDCl$_3$ at 25 °C (600 MHz).
Fig. S18 13C NMR spectrum of compound 5 in CDCl$_3$ at 25 °C (150 MHz).

Fig. S19 1H NMR spectrum of compound 6 in CDCl$_3$ at 25 °C (600 MHz).
Fig. S20 13C NMR spectrum of compound 6 in CDCl$_3$ at 25 °C (150 MHz).

Fig. S21 1H NMR spectrum of compound 7 in CDCl$_3$ at 25 °C (600 MHz).
Fig. S22 13C NMR spectrum of compound 7 in CDCl$_3$ at 25 °C (150 MHz).

Fig. S23 1H NMR spectrum of monomer 2 in CDCl$_3$ at 25 °C (600 MHz).
Fig. S24 13C NMR spectrum of monomer 2 in CDCl$_3$ at 25 °C (150 MHz).