Supporting Information

ADMET polymerization of bio-based biphenyl compounds

Audrey Llevot†,‡, Etienne Grau†,‡, Stéphane Carlotti†,‡, Stéphane Grelier†,‡, and Henri Cramail†,‡*

†Univ. Bordeaux, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac Cedex, France
‡Centre National de la Recherche Scientifique, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600, Pessac Cedex, France

Table of contents

Figure S 1: ¹H NMR spectra of vanillin 1 (top) and divanillin 5 (bottom) in DMSO at room temperature ...2
Figure S 2: ¹³C NMR spectrum of divanillin, 5, in DMSO ...3
Figure S 3: ¹H NMR spectrum of dimethyl divanillate, 6, in DMSO ..3
Figure S 5: ¹³C NMR spectrum of dimethyl divanillate, 6, in DMSO ..3
Figure S 6: ¹H NMR spectrum of 2-methoxy-4-methylphenol dimer, 7, in DMSO4
Figure S 7: ¹³C NMR spectrum of 2-methoxy-4-methylphenol dimer, 7, in DMSO5
Figure S 8: ¹H NMR spectrum of Dieugenol, 8, in DMSO ...5
Figure S 9: ¹³C NMR spectrum of Dieugenol, 8, in DMSO ...5
Figure S 10: ¹H NMR spectrum of methylated divanillin, 9, in DMSO6
Figure S 11: HSQC (a) and HMBC (b) spectra of methylated divanillin, 9, in DMSO, at room temperature ..7
Figure S 12: ¹³C NMR spectrum of methylated divanillin, 9, in DMSO7
Figure S 13: ¹H NMR spectrum of methylated dimethyl divanillate, 10, in DMSO8
Figure S 14: HSQC (a) and HMBC (b) spectra of methylated diester, 10, in DMSO8
Figure S 15: ¹³C NMR spectrum of methylated dimethyl divanillate, 10, in DMSO9
Figure S 16: ¹H NMR of methylated dieugenol, 11, in DMSO ...9
Figure S 17: HSQC (a) and HMBC (b) spectra of methylated dieugenol, 11, in DMSO10
Figure S 18: ¹³C NMR of methylated dieugenol, 11, in DMSO ...10
Figure S 19: ¹H NMR of allylated 2-methoxy-4-methylphenol, 12, dimer in DMSO11
Figure S 20: ¹³C NMR of allylated 2-methoxy-4-methylphenol dimer, 12, in DMSO11
Figure S 21: ¹H NMR spectrum of divinyl, 13, in DMSO ..12
Figure S 22: ¹³C NMR of methylated divinyl, 13, in DMSO ..12
Figure S 23: ¹H NMR spectrum of methylated divanillic diacid, 14, in DMSO13
Figure S 24: ¹³C NMR spectrum of methylated divanillic diacid, 14, in DMSO13
Figure S 1: 1H NMR spectra of vanillin 1 (top) and divanillin 5 (bottom) in DMSO at room temperature
Figure S 2: 13C NMR spectrum of divanillin, 5, in DMSO

Figure S 3: 1H NMR spectrum of dimethyl divanillate, 6, in DMSO
Figure S 5: 13C NMR spectrum of dimethyl divanillate, 6, in DMSO

Figure S 6: 1H NMR spectrum of 2-methoxy-4-methylphenol dimer, 7, in DMSO
Figure S 7: 13C NMR spectrum of 2-methoxy-4-methylphenol dimer, 7, in DMSO

Figure S 8: 1H NMR spectrum of dieugenol, 8, in DMSO
Figure S 9: 13C NMR spectrum of dieugenol, 8, in DMSO

Figure S 10: 1H NMR spectrum of methylated divanillin, 9, in DMSO
Figure S 11: HSQC (a) and HMBC (b) spectra of methylated divanillin, 9, in DMSO, at room temperature.

Figure S 12: 13C NMR spectrum of methylated divanillin, 9, in DMSO
Figure S 13: 1H NMR spectrum of methylated dimethyl divanillate, 10, in DMSO

Figure S 14: HSQC (a) and HMBC (b) spectra of methylated diester, 10, in DMSO.
Figure S 15: 13C NMR spectrum of methylated dimethyl divanillate, 10, in DMSO

Figure S 16: 1H NMR of methylated dieugenol, 11, in DMSO
Figure S 17: HSQC (a) and HMBC (b) spectra of methylated dieugenol, 11, in DMSO.

Figure S 18: 13C NMR of methylated dieugenol, 11, in DMSO.
Figure S 19: 1H NMR of allylated 2-methoxy-4-methylphenol, 12, dimer in DMSO

Figure S 20: 13C NMR of allylated 2-methoxy-4-methylphenol dimer, 12, in DMSO
Figure S 21: 1H NMR spectrum of divinyl, 13, in DMSO

Figure S 22: 13C NMR of methylated divinyl, 13, in DMSO
Figure S 23: 1H NMR spectrum of methylated divanillic diacid, 14, in DMSO

Figure S 24: 13C NMR spectrum of methylated divanillic diacid, 14, in DMSO
Figure S 25: 1H NMR spectrum of bisunsaturated diester, 15, in DMSO

Figure S 26: 1H NMR spectrum of bisunsaturated diester, 15, in DMSO
Figure S 27: HSQC (a) and HMBC (b) spectra of bis-unsaturated diester, 15, in DMSO, at room temperature

Figure S 28: Chemical structures of the first and second generation ruthenium metathesis catalysts.
Figure S 29: SEC profiles of P1, P2, P3 and P4 synthesized by ADMET polymerization of unsaturated biphenyls, in DMF using PS calibration.

Figure S 30: HSQC spectrum of P1 in TCE, at room temperature.
Figure S 31: HSQC spectrum of P3 in TCE, at room temperature.

Figure S 32: COSY spectrum of P4 in TCE, at room temperature.
Figure S 33: DSC analyses of P1, P2, P3 and P4, second heating cycle.

Figure S 34: TGA analyses under air of ADMET polymers, P1, P2, P3 and P4.