Electronic Supplementary Information

Benzo[5]helicene-based conjugated polymers: synthesis, photophysical properties, and application for the detection of nitroaromatic explosives

Li-Li Zhou,a Meng Li,b Hai-Yan Lu,*a,a and Chuan-Feng Chen*a,b

aUniversity of Chinese Academy of Sciences, Beijing 100049, China. E-mail: haiyanlu@ucas.ac.cn.

bBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: cchen@iccas.ac.cn.

Contents

S1. Copies of 1H NMR and 13C NMR spectra

S2. TGA thermogram of the polymers

S3. IR spectra of the polymers

S4. AFM topography image of the spin-coated film of P2

S5. Fluorescence spectra of the polymers in presence of different concentrations of the analytes in CDCl\textsubscript{3} and their corresponding Stern-Volmer plots

S6. Fluorescence spectra of the film of P2 upon exposure to the saturated vapor of the analytes at diffident time interval and their corresponding quenching efficiency against time

S7. Absorption spectra of compound 2 and the polymers
S1. Copies of the 1H NMR and 13C NMR spectra

Fig. S1 1H NMR spectrum (500 MHz, CDCl$_3$) of 2.

Fig. S2 13C NMR spectrum (125 MHz, CDCl$_3$) of 2.
Fig. S3 1H NMR spectrum (300 MHz, CDCl$_3$) of 3.

Fig. S4 13C NMR spectrum (75 MHz, CDCl$_3$) of 3.
Fig. S5 1H NMR spectrum (500 MHz, CDCl$_3$) of 4.

Fig. S6 13C NMR spectrum (125 MHz, CDCl$_3$) of 4.
Fig. S7 1H NMR spectrum (500 MHz, CDCl$_3$) of P1.

Fig. S8 1H NMR spectrum (500 MHz, CDCl$_3$) of P2.
Fig. S9 1H NMR spectrum (500 MHz, CDCl$_3$) of P3.

Fig. S10 1H NMR spectrum (500 MHz, CDCl$_3$) of P4.
S2. TGA thermogram of the polymers

![TGA thermogram of the polymers](image)

Fig. S12 TGA plots of the polymers with a heating rate of 10°C/min under nitrogen.
S3. IR spectra of the polymers

Fig. S13 IR spectrum of P1.

Fig. S14 IR spectrum of P2.
Fig. S15 IR spectrum of P3.

Fig. S16 IR spectrum of P4.
Fig. S17 IR spectrum of P5.

S4. AFM topography image of the spin-coated film of P2

Fig. S18 AFM topography image of the spin-coated film of P2 and the thickness of the film.
S5. Fluorescence spectra of the polymers in presence of different concentrations of the analytes in CDCl₃ and their corresponding Stern-Volmer plots

Fig. S19 Fluorescence spectra of P1 in presence of different concentrations of TNT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S20 Fluorescence spectra of P1 in presence of different concentrations of DNT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S21 Fluorescence spectra of P1 in presence of different concentrations of PA in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).
Fig. S22 Fluorescence spectra of P1 in presence of different concentrations of NT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S23 Fluorescence spectra of P1 in presence of different concentrations of BP in CDCl₃.

Fig. S24 Fluorescence spectra of P2 in presence of different concentrations of TNT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).
Fig. S25 Fluorescence spectra of P2 in presence of different concentrations of DNT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S26 Fluorescence spectra of P2 in presence of different concentrations of PA in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S27 Fluorescence spectra of P2 in presence of different concentrations of NT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).
Fig. S28 Fluorescence spectra of P2 in presence of different concentrations of BP in CDCl$_3$ (left) and its corresponding Stern-Volmer plot (right).

Fig. S29 Fluorescence spectra of P3 in presence of different concentrations of TNT in CDCl$_3$ (left) and its corresponding Stern-Volmer plot (right).

Fig. S30 Fluorescence spectra of P3 in presence of different concentrations of DNT in CDCl$_3$ (left) and its corresponding Stern-Volmer plot (right).
Fig. S31 Fluorescence spectra of P3 in presence of different concentrations of PA in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S32 Fluorescence spectra of P3 in presence of different concentrations of NT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S33 Fluorescence spectra of P3 in presence of different concentrations of BP in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).
Fig. S34 Fluorescence spectra of P4 in presence of different concentrations of TNT in CDCl$_3$.

Fig. S35 Fluorescence spectra of P4 in presence of different concentrations of DNT in CDCl$_3$ (left) and its corresponding Stern-Volmer plot (right).

Fig. S36 Fluorescence spectra of P4 in presence of different concentrations of PA in CDCl$_3$ (left) and its corresponding Stern-Volmer plot (right).
Fig. S37 Fluorescence spectra of P4 in presence of different concentrations of NT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S38 Fluorescence spectra of P4 in presence of different concentrations of BP in CDCl₃.

Fig. S39 Fluorescence spectra of P5 in presence of different concentrations of TNT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).
Fig. S40 Fluorescence spectra of P5 in presence of different concentrations of DNT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S41 Fluorescence spectra of P5 in presence of different concentrations of PA in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

Fig. S42 Fluorescence spectra of P5 in presence of different concentrations of NT in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).
Fig. S43 Fluorescence spectra of P5 in presence of different concentrations of BP in CDCl₃ (left) and its corresponding Stern-Volmer plot (right).

S6. Fluorescence spectra of the film of P2 upon exposure to the saturated vapor of the analytes at different time interval and their corresponding quenching efficiency against time.

Fig. S44 Fluorescence spectra of the film of P2 upon exposure to the saturated vapor of TNT at different time interval (left) and quenching efficiency against time (right).

Fig. S45 Fluorescence spectra of the film of P2 upon exposure to the saturated vapor of DNT at different time interval (left) and quenching efficiency against time (right).
Fig. S46 Fluorescence spectra of the film of P2 upon exposure to the saturated vapor of PA at different time interval (left) and quenching efficiency against time (right).

Fig. S47 Fluorescence spectra of the film of P2 upon exposure to the saturated vapor of NT at different time interval (left) and quenching efficiency against time (right).

Fig. S48 Fluorescence spectra of the film of P2 upon exposure to the saturated vapor of BP at different time interval (left) and quenching efficiency against time (right).
S7. Absorption spectra of compound 2 and the polymers

Fig. S49 The absorption spectra of compound 2 and the polymers in CHCl₃ at 1.0 × 10⁻⁶ M.