Supporting Information

Synthesis of Highly Refractive and Highly Fluorescent Rigid Cyanuryl Polyimines with Polycyclic Aromatic Hydrocarbon Pendants

Tomohiro Kotaki,¹ Naoya Nishimura,² Masaaki Ozawa,² A. Fujimori,³ Hiroki Muraoka,¹ Satoshi Ogawa,¹ Toshinobu Korenaga,¹ Eiichi Suzuki,¹ Yoshiyuki Oishi,¹ and Yuji Shibasaki¹*

¹Department of Chemistry & Bioengineering, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
²Materials Research Department, Chemical Research Laboratories, Nissan Chemical Industries Ltd., 488-6, Ssuzumi-Cho, Funabashi-shi, Chiba 274-0052, Japan
³Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
Figure S1. 1H and 13C NMR spectra of AnDCT (DMSO-d_6)
Figure S2. 1H and 13C NMR spectra of DCPT (DMSO-d_6)
Figure S3. 1H and 13C NMR spectra of αDCNT (DMSO-d_6)
Figure S4. 1H and 13C NMR spectra of BnDCT (DMSO-d_6)
Figure S5. 1H and 13C NMR spectra of DCNmT (DMSO-d_6)
Figure S6. 1H and 13C NMR spectra of βAntDCT (DMSO-d$_6$)
Figure S7. 1H and 13C NMR spectra of αDCPyT (DMSO-d$_6$)
Figure S8. 1H and 13C NMR spectra of βDCNT (DMSO-d_6)
Figure S9. 1H NMR spectra of poly(αDCNT-PDA) (DMSO-d_6)
Figure S10. 13C NMR spectra of poly(αDCNT-pPDA) (DMSO-d_6)
Figure S11. 1H NMR spectra of poly(aDCNT-mPDA) (DMSO-d_6)
Figure S12. ^1H NMR spectra of poly(αDCNT-BAFL) (DMSO-d_6)
Figure S13. 13C NMR spectra of poly(αDCNT-BAFL) (DMSO-d_6)
Figure S14. 1H NMR spectra of poly(bDCNT-pPDA) (DMSO-d$_6$)
Figure S15. 1H NMR spectra of poly(βDCNT-mPDA) (DMSO-d_6)
Figure S16. 1H NMR spectra of poly(βDCNT-BAFL) (DMSO-d_6)
Figure S17. 1H NMR spectra of poly(βAntDCT-pPDA) (DMSO-d_6)
Figure S18. 1H NMR spectra of poly(βAntDCT·mPDA) (DMSO·d$_6$)
Figure S19. 1H NMR spectra of poly(βAntDCT-BAFL) (DMSO-d_6)
Figure S20. 1H NMR spectra of poly(βDCPyT-pPDA) (DMSO-$_d$6)
Figure S21. 1H NMR spectra of poly(βDCPyT·mPDA) (DMSO·d_6)
Figure S22. 1H NMR spectra of poly(βDCPyT-BAFL) (DMSO-$_d$$_6$)
Figure S23. 1H NMR spectra of poly(AnDCT-pPDA) (DMSO-d_6)
Figure S24. 1H NMR spectra of poly(AnDCT-mPDA) (DMSO-d_6)
Figure S25. 1H NMR spectra of poly(AnDCT-BAFL) (DMSO-d_6)
Figure S26. 1H NMR spectra of poly(DCPT-pPDA) (DMSO-$_d_6$)
Figure S27. 1H NMR spectra of poly(DCPT-BAFL) (DMSO-d_6)
Figure S28. 1H NMR spectra of poly(BnDCT−PDA) (DMSO−d$_6$)
Figure S29. 1H NMR spectra of poly(BnDCT-mPDA) (DMSO-d_6)
Figure S30. 1H NMR spectra of poly(BnDCT-BAFL) (DMSO-d_6)
Figure S31. 1H NMR spectra of poly(DCNmTpPDA) (DMSO-d_6)
Figure S32. 1H NMR spectra of poly(DCmT-mPDA) (DMSO-d_6)
Figure S33. 1H NMR spectra of poly(DCNmT-BAFL) (DMSO-d_6)
Figure S34. GPC profiles of AnDCT-based PG polymers (NMP, LiBr)
Figure S35. GPC profiles of DCPT-based PG polymers (NMP, LiBr)
Figure S36. GPC profiles of BnDCT-based PG polymers (NMP, LiBr)
Figure S37. GPC profiles of αDCNT-based PG polymers (NMP, LiBr)
Figure S38. GPC profiles of βDCNT-based PG polymers (NMP, LiBr)
Figure S39. GPC profiles of αDCNnT-based PG polymers (NMP, LiBr)
Figure S40. GPC profiles of AntDCT-based PG polymers (NMP, LiBr)
Figure S41. GPC profiles of αDCPyT-based PG polymers (NMP, LiBr)