Electronic Supplementary Information

Water Adsorption Properties of a Sc(III) Porous Coordination Polymer for CO₂ Capture Applications

J. Raziel Álvarez,^a Ricardo A. Peralta,^a Jorge Balmaseda, ^a Eduardo González-Zamora^{*,b} and Ilich A. Ibarra^{*,a}

^aInstituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, México D. F., Mexico. E-mail: argel@unam.mx

^b Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, México D. F., Mexico. 1. Representation of the binuclear $[Sc_2(\mu_2-OH)]$ building block

Figure S1: Binuclear building block of two metal ions oxygen octahedra bridged by a μ_2 -hydroxo group. Green, red, black and white spheres represent Sc(III), O, C and H atoms, respectively.

2. Materials and Measurements

All reagents and solvents were used as received from commercial suppliers without further purification. Powder X-ray diffraction (PXRD) data were collected under ambient conditions on a Bruker AXD D8 Advance diffractometer operated at 160 W (40 kV, 40 mA) for Cu K α_1 (λ = 1.5406 Å). Thermal gravimetric analysis (TGA) was performed under N₂ at a scan rate of 2 °C/min using a TA Instruments Q500HR analyser. N₂ adsorption was carried out in a conventional volumetric technique by a Micromeritics ASAP 2020 sorptometer. The surface area was calculated using the BET method based on adsorption data in the partial pressure (p/p_0) range 0.01 to 0.04. Dynamic and isothermal experiments were performed using a humidity-controlled thermobalance (TA Instruments, model Q5000SA) at 30 °C and different relative humidities (RH).

3. TGA plot

Figure S2: TGA analyses of as-synthesised NOTT-400 (black line) and acetone-exchanged NOTT-400 (red line).

4. Powder X-ray Diffraction Patterns

Figure S3: PXRD patters of as-synthesised (black) and desolvated (red) NOTT-400.

Figure S4: PXRD patters of as-synthesised (green) and after five cycling water adsorption/desorption experiments (blue) of NOTT-400.

5. Calculation of the hydroxo functional groups (μ_2 -OH) and the water molecules adsorbed per unit cell

	Po	4256.3854 Pa				
	m _{ref}	22.9705 mg			<i>m</i> o	
Sc2(C16H6O8)(OH)2	450.1418 g/mol			H ₂ 0	
MV	VH2O	18.015 g/mol	Molecules	n_{H_2O}	MW_{H_2O}	$m_{H_2O} Z M W_m$
	Z	4	Cell	- = <u> </u>	\overline{m}	$=$ \overline{m} MW_{H}
0	H/cell	8		- ceu	Z MW _m	
T		0				
Target, % F	70	Change in Mass (%) - ret	р, Ра	m, mg	molec/cell	
		0.20	0	22.9705	0 27000224	8
	10	0.58	21281.927	23.0577879	0.57980324	8
	10	0.67	42563.854	23.1244024	0.66965308	8
	15	1.01	05845.781	23.2025021	1.00947703	8
	20	1.47	106400-635	23.3061004	1.40925885	0
	20	4.22	100409.000	23.4/3631	2.19880080	0
	20	4.52	12/091.502	23.9028230	4.51776514	0
	24	10.05	130204.333	24.495/412	0.03030187	0
	26	10.95	152220 974	25.465/096	10.9445502	0
	20	20.57	153229.074	27.2301219	20 6551540	
	40	20.07	170255 416	29.3301424	36 5510644	8
	40	37.33	178768 187	31 5453977	37 3106709	8
	44	27.50	107200.050	21 605111	27 5705262	
	44	37.55	107200.930	31.6649343	37,9304016	
	40	32.1	20/206 / 00	31 7222605	38.0802722	
	50	20.2	204300.433	31.7222005	38 3001593	
	55	30.32	212015.27	31.0312021	38.0001000	
	-00	20.00	254101.197	22 1224225	20 9602452	
	60	39.69	200000.124	22 2200700	39.0093433	0
	70	40.75	207045 079	22 5124457	40.7209	
	70	41.34	25/540.976	22 7101902	41.516491	0
	20	42.44	315220.905	32.7191602	42.410025	8
	00	40.00	202074 606	22 2011/157	44.0067267	
	90	44.53	3030/4.000	33.2911437	44.500/33/	0

Figure S5: Water molecules per NOTT-400 cell vs water pressure.

6. Kinetic Isotherms

Figure S6: Kinetic uptake experiments carried out at 30 $^{\circ}$ C and 35% RH with H₂O (blue line) and H₂O+CO₂ (green line).

Figure S7: Kinetic uptake experiments carried out at 30 $^{\circ}$ C and 60% RH with H₂O (blue line) and H₂O+CO₂ (green line).

7. Static and isothermal adsorption experiments on NOTT-400

Fig. S8: left) Static N₂ isotherm carried out at 30 °C in NOTT-400; right) BET plot.

Fig. S9: Static H_2O isotherm carried out at 20 °C in NOTT-400.

Enthalpy for H₂O adsorption

Adsorption	kJ/mol -46.815
Isosteric enthalpy of adsorption is calculated via a Clausius- Clapeyron-type equation	(∂ ln p/∂ T) _θ =-∆H _s /RT²
	 θ= vapour surface coverage ΔHs = enthalpy of adsorption
we obtain the values with	ΔHs =-R [ln (p2/p1) / (1/T2)-(1/T1)]

Fig. S10: Static CO₂ isotherm carried out at 30 °C in NOTT-400.