Electronic Supplementary Information:

Assembled 3D Electrocatalysts for Efficient Hydrogen Evolution:

WSe₂ Layers Anchored on Graphene Sheets

Zhengqing Liu, Hongyang Zhao, Na Li, Yi Zhang, Xinyu Zhang and Yaping Du*

Contents

Fig. S1
Fig. S2
Fig. S3
Fig. S4
Fig. S5
Fig. S6
Fig. S7
Table S1
Fig. S1 (a) SEM and (b) TEM image of GO nanosheets fabricated by the modified Hummers method.

Fig. S2 (a) The SEM image of WSe$_2$ layers. (b) TEM image of WSe$_2$/rGO hybrid with no free WSe$_2$ can be observed. (c) Energy-dispersive X-ray analysis (EDS) spectrum of WSe$_2$ layers, the atomic ratio of W/Se = 1:2. The Au signals come from the WSe$_2$ sample treated by gold spraying to improve its electrical conductivity.
Fig. S3 TEM images of the WSe$_2$ products obtained from the reaction of 0.2 mmol (NH$_4$)$_2$WO$_4$ and 0.6 mmol Se in different surfactant composition (OM/OA) at 280 °C for 1 h: (a) OM (10 mmol)/OA (10 mmol) = 1/1, (b) pure OA (20 mmol). (c) XRD patterns of the (a) and (b) products, indicating the WO$_3$ is present in as-harvested WSe$_2$ products. Where, WSe$_2$ space group: P63/mmc, $a = b = 0.329$ nm, $c = 1.298$ nm, JCPDS: 38-1388; WO$_3$ space group: P6/mmm, $a = b = 7.298$, $c = 3.899$ nm, JCPDS: 33-1387.

Fig. S4 (a) TEM image of the WSe$_2$ products obtained from the reaction of 0.2 mmol (NH$_4$)$_2$WO$_4$ and 0.4 mmol Se in pure OM at 280 °C for 1 h. (b) Magnified TEM image of the selected area showing in (a).
Fig. S5 Polarization curves recorded on glassy carbon electrodes with catalysts of (a) pure WSe$_2$ layers, WSe$_2$+rGO (0.2 mmol WSe$_2$ layers physically mixed with 20 mg rGO) and WSe$_2$/rGO hybrid, and (b) different content of rGO in WSe$_2$/rGO hybrid. The loading concentration is 0.285 mg cm$^{-2}$, potential scan rate is 2 mV s$^{-1}$, and electrode rotating rate is 1600 rpm.

Fig. S6 XPS spectra of (a) W and (b) Se after 48 h continuous HER process, showing no obvious change of the chemical states, demonstrating the superior stability of the 3D WSe$_2$/rGO hybrid.
Fig. S7 Durability tests by continuous HER recorded on WSe$_2$-modified CFP electrode at a static overpotential of -0.7 V vs SCE. The catalysts were deposited on CFP with loading of 1 mg cm$^{-2}$. All the measurements were performed in N$_2$ saturated 0.5 M H$_2$SO$_4$ electrolyte. The WSe$_2$ layers catalyst exhibited fluctuation in HER activity, indicating the inferior stability of WSe$_2$ layers than the WSe$_2$/rGO hybrid catalyst.

Fig. S8 The equivalent circuit used for data fitting, where Rs is the solution (uncompensated) resistance, CPE is the electrode double-layer capacitance and Rct is the charge-transfer resistance.
Table S1 Comparison the present obtained WSe$_2$/rGO hybrid and other previously reported WSe$_2$-based catalysts for HER performance.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Production Method</th>
<th>Onset Potential (mV vs. RHE)</th>
<th>Overpotential (mV vs. RHE) at 10 mA cm$^{-2}$</th>
<th>Tafel Slope (mV/dec)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSe$_2$/rGO hybrid</td>
<td>Solvothermal</td>
<td>-100</td>
<td>180</td>
<td>64</td>
<td>Present Work</td>
</tr>
<tr>
<td>WSe$_2$ nanotube on carbon fiber paper</td>
<td>Selenylation</td>
<td>-</td>
<td>350</td>
<td>99</td>
<td>S1</td>
</tr>
<tr>
<td>Vertically WSe$_2$ Aligned Layers on carbon fiber paper</td>
<td>CVD</td>
<td>-</td>
<td>300</td>
<td>77.4</td>
<td>S2</td>
</tr>
<tr>
<td>2D WSe$_2$ sheets</td>
<td>Chemical exfoliation</td>
<td>-130</td>
<td>800</td>
<td>120</td>
<td>S3</td>
</tr>
<tr>
<td>WSe$_2$ sheets on W foils</td>
<td>Chemical-vapor transport (CVT)</td>
<td>-300</td>
<td>350</td>
<td>-</td>
<td>S4</td>
</tr>
<tr>
<td>3D dendritic WSe$_2$ on carbon nanofiber</td>
<td>CVD method</td>
<td>-150</td>
<td>228</td>
<td>80</td>
<td>S5</td>
</tr>
</tbody>
</table>

References