Supporting Information (SI)

Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge$_{1-x}$Bi$_x$Te

Suresh Perumal,† Subhajit Roychowdhury,† and Kanishka Biswas *

†New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064 (India)

†SP and SR hold equal first authorship

*E-mail: kanishka@jncasr.ac.in
Fig. S1 Two cycles of heating and cooling zT data of Ge$_{0.94}$Bi$_{0.06}$Te.

Fig. S2 Temperature dependent thermal diffusivity of Ge$_{1-x}$Bi$_{x}$Te (x = 0-0.10) samples.
Fig. S3 Dulong-Petit and experimentally measured C_p of $\text{Ge}_{1-x}\text{Bi}_x\text{Te}$ as a function of temperature.

Fig. S4 Optical micrographs of Vickers microhardness impressions of (a) GeTe and (b) $\text{Ge}_{0.94}\text{Bi}_{0.06}\text{Te}$.
Fig. S5 Temperature dependent electronic thermal conductivity of Ge$_{1-x}$Bi$_x$Te ($x = 0$-0.10) samples.

Fig. S6 Temperature dependent Lorenz number as a function of temperature.