Electronic Supplementary Information for

One-pot synthesis of 3-D dandelions-like architectures constructed by rutile TiO$_2$ nanorods grown along [001] axis for high-rate lithium ion batteries

Yu Bai,* Naiqing Zhang, *a,b and Kening Sun*,a,b

*a* Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, China.

*b* State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

* To whom correspondence should be addressed. E-mail: keningsunhit@126.com; znqmww@126.com;
Fig. S1 FT-IR spectrum of C16mimBr.
Fig. S2 FT-IR spectrum of the TiO$_2$ rutile.
Fig. S3 N$_2$ adsorption/desorption isotherms for the TiO$_2$ rutile (the inset shows the BJH data).
Fig. S4 XRD of standard anatase TiO$_2$ (JCPDS. No. 65-5714) and the as-derived TiO$_2$ without C16mimBr in the synthesizing procedure.
Fig. S5 TEM image of the as-derived anatase TiO$_2$ without C16mimBr in the synthesizing procedure.
Fig. S6. (a) Representative SEM image of rutile TiO$_2$ after the cycling process.
(b) TEM image of a TiO$_2$ particle after the cycling process