Functionalization of Photochromic Dithienylmaleimides

D. Wutz, C. Falenczyk, N. Kuzmanovic and B. König*

Supporting Information

Non-hydrolytic methyl ester deprotection of 12

Synthesis of compounds 11S, 12S, 13S and 21S

¹H- and ³C-NMR spectra of all prepared compounds
Non-hydrolytic methyl ester deprotection of 12

Table S1. Non-hydrolytic methyl ester deprotection of 12.

<table>
<thead>
<tr>
<th>Entry</th>
<th>LiI [eq]</th>
<th>Solvent</th>
<th>T [°C]</th>
<th>Isolated yield[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td>EtOAc</td>
<td>r.t.</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>3.0</td>
<td>EtOAc</td>
<td>reflux</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>EtOAc</td>
<td>reflux</td>
<td>26%</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>acetone</td>
<td>reflux</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>acetone</td>
<td>reflux</td>
<td>35%</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>MeCN</td>
<td>reflux</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>DMSO</td>
<td>100 °C</td>
<td>--</td>
</tr>
</tbody>
</table>

[a] If conversion was too low the product 13b was not isolated.

Synthesis of compounds 11S, 12S, 13S and 21S

Scheme S1. Perkin condensation of 10 and 11S yielding dithienylmaleimide 12 and 12S.

Scheme S2. Hydrolytic ester cleavage yielding maleic anhydride 13S.

Scheme S3. Synthesis of ethyl ester 11S.
Ethyl 4-(2-methoxy-2-oxoethyl)-5-methylthiophene-2-carboxylate (11S): Thallium trinitrate (2.20 g, 4.94 mmol) and 70% HClO₄ (2 mL) were added to a suspension of 21S (875 mg, 4.12 mmol) in MeOH (10 mL) at room temperature. After stirring for 24 h the mixture was concentrated under reduced pressure and diluted with water (10 mL). The aqueous phase was extracted with chloroform (3 x 15 mL) and the combined organic layers were dried over MgSO₄. The solvent was evaporated and purification of the crude product by automated flash column chromatography (PE/EtOAc, 3% - 15% EtOAc) yielded compound 11S (816 mg, 82%) as yellowish oil. R_f: 0.23 (PE/EtOAc: 9/1); IR (neat) v_max: 3081, 2987, 2922, 1730, 1705, 1460, 1254, 1201, 1172, 1061; ¹H-NMR (400 MHz, CDCl₃): δ = 1.35 (t, J = 7.1 Hz, 3H, O−CH₂−C₃H₇), 2.42 (s, 3H, thiophene-C₃H₃), 3.54 (s, 2H, C−C₃H₂−CO), 3.70 (s, 3H, CO−O−C₃H₃), 4.31 (q, J = 7.1 Hz, 2H, O−C₃H₂−CH₃), 7.60 (s, 1H, thiophene-Η); ¹³C-NMR (75 MHz, CDCl₃): δ = 13.8 (+), 14.4 (+), 33.8 (−), 52.2 (+), 61.0 (−), 129.6 (q), 130.6 (q), 135.4 (+), 143.8 (q), 162.2 (q), 171.0 (q); HR-MS (ESI): calcd. for C₁₁H₁₄NaO₄S (M+Na)⁺ 265.0505; found 265.0502.

Methyl/Ethyl 4-(4-(5-(((allyloxy)carbonyl)amino)methyl)-2-methyl-thiophen-3-yl)-2,5-dioxo-2,5-dihydro-1Η-pyrrol-3-yl)-5-methylthiophene-2-carboxylate (12/12S): KOtBu (1 M in THF, 1.34 mL, 1.34 mmol) was added to a solution of 10 (316 mg, 1.12 mmol) in anhydrous THF (6 mL) at 0 °C under nitrogen atmosphere. After stirring for 90 min at 0 °C, diester 11S (326 mg, 1.34 mmol) was added and stirred for 15 h at room temperature. Then the reaction was heated to 60 °C for 1 h, quenched with 1 M HCl solution (4 mL) and diluted with EtOAc (10 mL). The organic phase was washed with water (3 x 5 mL), brine (5 mL) and dried over MgSO₄. The solvent was removed under reduced pressure and purification of the crude product by automated reversed phase flash column chromatography (H₂O/EtOH, 20% - 45% EtOH) yielded 12S (40 mg, 8%) as orange foam, 12 (74 mg, 14%) as yellow foam and a mixed fraction of both (65 mg). Analytical data of 12S: R_f: 0.25 (PE/EtOAc: 2/1); IR (neat) v_max: 3288, 3071, 2980, 1710, 1541, 1458, 1252, 995, 916, 760; UV/Vis (50 µM in MeOH): open isomer: Λ_max = 250 nm; closed isomer: Λ_max = 232 nm, 378 nm, 554 nm; ¹H-NMR (400 MHz, CDCl₃): δ = 1.36 (t, J = 7.1 Hz, 3H, O−CH₂−CH₃), 1.91 (s, 3H, thiophene-CH₃), 1.97 (s, 3H, thiophene-CH₃), 4.33 (q, J = 7.1 Hz, 2H, O−CH₂−CH₃), 4.45 (d, J = 5.9 Hz, 2H, C−CH₂−NH), 4.60 (d, J = 4.8 Hz, 2H, O−CH₂−CH), 5.14 – 5.26 (m, 2H, CH₂=CH−CH₂ and CH₂−NH−CO), 5.31 (dd, J = 17.2, 1.1 Hz, 1H, CH₂=CH−CH₂), 5.92 (ddt, J = 16.3, 10.8, 5.6 Hz, 1H, CH₂=CH−CH₂), 6.90 (s, 1H, thiophene-Η), 7.75 (s, 1H, thiophene-Η), 7.97 (bs, 1H, CO−NH−CO); ¹³C-NMR (101 MHz, CDCl₃): δ = 14.3 (+), 15.0 (+), 15.3 (+), 39.9 (−).
61.4 (−), 65.9 (−), 117.9 (−), 125.8 (q), 127.4 (q), 131.4 (q), 132.7 (+), 132.8 (q), 134.7 (+), 139.4 (q), 142.1 (q), 148.4 (q), 156.0 (q), 161.7 (q), 170.0 (q), 170.1 (q); HR-MS (ESI): calcd. for C_{22}H_{23}N_{2}O_{6}S_{2} (M+H)^{+} 475.0993; found 475.0992.

4-(4-(5-((((Allyloxy)carbonyl)amino)methyl)-2-methylthiophen-3-yl)-2,5-dioxo-2,5-dihydrofuran-3-yl)-5-methylthiophene-2-carboxylic acid (13S): A mixture of 12 and 12S (62 mg) in 10 mL of H_{2}O/MeOH/THF (2:5:3, v/v/v) was stirred for 20 h with NaOH (78 mg, 1.95 mmol) at room temperature. After addition of water (10 mL) the reaction mixture was washed with EtOAc (2 x 10 mL) and then acidified with conc. HCl to pH 1. The aqueous phase was extracted with EtOAc (3 x 10 mL) and the combined organic phases were dried over MgSO_{4}. Evaporation of the solvent and purification of the crude product by automated reversed phase flash column chromatography (H_{2}O/MeCN, 20% - 55% MeCN) yielded 13S (29 mg)^{A} as green solid. R_{f}: 0.02 (PE/EtOAc: 1/1); m.p.: 84 °C; IR (neat) \nu_{\max}: 3327, 3164, 3020, 2925, 1764, 1702, 1541, 1458, 1254, 931, 750; UV/Vis (50 µM in MeOH): open isomer: \lambda_{\max} = 246 nm; closed isomer: \lambda_{\max} = 384 nm, 568 nm; ^{1}H-NMR (400 MHz, DMSO-d_{6}): \delta = 1.90 (s, 3H, thiophene-CH_{3}), 1.96 (s, 3H, thiophene-CH_{3}), 4.28 (d, J = 6.1 Hz, 2H, thiophene-CH_{2}NH), 4.49 (d, J = 5.3 Hz, 2H, CH_{2}CH\text{=CHCH}_{2}O), 5.17 (dd, J = 10.5, 1.4 Hz, 1H, CH\text{=CHCH}_{2}), 5.27 (dd, J = 17.2, 1.5 Hz, 1H, CH\text{=CHCH}_{2}), 5.90 (ddt, J = 17.2, 10.6, 5.3 Hz, 1H, CH\text{=CHCH}_{2}), 6.86 (s, 1H, thiophene-H), 7.65 (s, 1H, thiophene-H), 7.92 (t, J = 6.0 Hz, 1H, CH\text{=NHCO}), 13.30 (bs, 1H, COOH); ^{13}C-NMR (75 MHz, DMSO-d_{6}): \delta = 14.1 (+), 14.5 (+), 38.8 (−), 64.4 (−), 116.9 (−), 124.9 (q), 125.5 (+), 126.8 (q), 131.6 (q), 133.5 (+), 133.9 (q), 134.1 (+), 135.6 (q), 140.8 (q), 141.4 (q), 148.6 (q), 155.9 (q), 162.2 (q), 164.9 (q), 164.9 (q); HR-MS (ESI): calcd. for C_{20}H_{18}NO_{7}S_{2} (M+H)^{+} 448.0519; found 448.0516.

Ethyl 4-acetyl-5-methylthiophene-2-carboxylate (21S): A solution of acetyl chloride (128 µL, 1.80 mmol) in anhydrous chloroform (2 mL) was added to AlCl_{3} (480 mg, 3.60 mmol) at room temperature under nitrogen atmosphere. After stirring for 10 min a solution of 20S (204 mg, 1.20 mmol) in anhydrous chloroform (2 mL) was dropped to the suspension. The mixture was heated to 60 °C for 9 h, then the reaction was quenched with ice/water and the aqueous phase was extracted with chloroform (2 x 30 mL). The combined organic phases were washed with saturated aqueous solution of NaHCO_{3} (50 mL) and brine.

^A Yield could not be determined because the ratio of 12 to 12S in the mixture was not calculated.
(50 mL). The organic phase was dried over MgSO₄ and the solvent was evaporated. The crude product was purified by automated flash column chromatography (PE/EtOAc, 8% - 30% EtOAc) and 21S (180 mg, 71%) was obtained as colorless solid. R_f: 0.15 (PE/EtOAc: 9/1); m.p.: 103 °C; IR (neat) νmax: 3008, 2985, 2944, 1713, 1670, 1540, 1452, 1250, 1236, 1082, 1021, 747; ¹H-NMR (400 MHz, CDCl₃): δ = 1.37 (t, J = 7.1 Hz, 3H, O−CH₂−CH₃), 2.52 (s, 3H, thiophene-CH₃), 2.75 (s, 3H, acetyl-CH₃), 4.34 (q, J = 7.1 Hz, 2H, O−CH₂−CH₃), 8.02 (s, 1H, thiophene-H); ¹³C-NMR (101 MHz, CDCl₃): δ = 14.3 (+), 16.8 (+), 29.6 (+), 61.4 (−), 129.0 (q), 134.7 (+), 136.3 (q), 155.6 (q), 161.6 (q), 193.7 (q); HR-MS (ESI): calcd. for C₁₀H₁₃O₃S (M+H)⁺ 213.0580; found 213.0581.
1H- and 13C-NMR spectra of all prepared compounds

1H-NMR (300 MHz, DMSO-d_6) for compound 4:

13C-NMR (75 MHz, DMSO-d_6) for compound 4:
1H-NMR (300 MHz, DMSO-d_6) for compound 6:

13C-NMR (75 MHz, DMSO-d_6) for compound 6:
1H-NMR (400 MHz, DMSO-d_6) for compound 7:

13C-NMR (101 MHz, DMSO-d_6) for compound 7:
1H-NMR (400 MHz, DMSO-d_6) for compound 8:

13C-NMR (101 MHz, DMSO-d_6) for compound 8:
1H-NMR (300 MHz, CDCl₃) for compound 9:

13C-NMR (75 MHz, CDCl₃) for compound 9:
1H-NMR (400 MHz, CDCl$_3$) for compound 10:

13C-NMR (101 MHz, CDCl$_3$) for compound 10:
^{1}H-NMR (400 MHz, CDCl$_3$) for compound 11:

^{13}C-NMR (101 MHz, CDCl$_3$) for compound 11:
1H-NMR (400 MHz, CDCl$_3$) for compound 11S:

13C-NMR (101 MHz, CDCl$_3$) for compound 11S:
1H-NMR (400 MHz, CDCl$_3$) for compound 12:

13C-NMR (101 MHz, CDCl$_3$) for compound 12:
1H-NMR (400 MHz, CDCl$_3$) for compound 12S:

13C-NMR (101 MHz, CDCl$_3$) for compound 12S:
1H-NMR (600 MHz, MeOD) for compound 13a:

13C-NMR (151 MHz, MeOD) for compound 13a:
1H-NMR (300 MHz, CD$_3$CN) for compound 13b:

13C-NMR (75 MHz, CD$_3$CN) for compound 13b:
1H-NMR (300 MHz, DMSO-d_6) for compound 13S:

13C-NMR (75 MHz, DMSO-d_6) for compound 13S:
1H-NMR (400 MHz, CDCl$_3$) for compound 17:

13C-NMR (101 MHz, CDCl$_3$) for compound 17:
1H-NMR (400 MHz, CDCl$_3$) for compound 18:

13C-NMR (101 MHz, CDCl$_3$) for compound 18:
1H-NMR (300 MHz, CDCl$_3$) for compound 21:

13C-NMR (75 MHz, CDCl$_3$) for compound 21:
$\text{H-NMR (400 MHz, CDCl}_3\text{)}$ for compound $21S$:

$\text{C-NMR (101 MHz, CDCl}_3\text{)}$ for compound $21S$:

$\text{13C-NMR (101 MHz, CDCl}_3\text{)}$ for compound $21S$:
1H-NMR (300 MHz, DMSO-d_6) for compound 23:

13C-NMR (75 MHz, DMSO-d_6) for compound 23:
1H-NMR (400 MHz, DMSO-d_6) for compound 24:

13C-NMR (101 MHz, DMSO-d_6) for compound 24:
1H-NMR (300 MHz, CDCl$_3$) for compound 26:

13C-NMR (75 MHz, CDCl$_3$) for compound 26:
1H-NMR (300 MHz, CDCl$_3$) for compound 27:

13C-NMR (75 MHz, CDCl$_3$) for compound 27:
1H-NMR (300 MHz, CDCl$_3$) for compound 30:

13C-NMR (75 MHz, CDCl$_3$) for compound 30:
1H-NMR (300 MHz, CDCl$_3$) for compound 31:

13C-NMR (75 MHz, CDCl$_3$) for compound 31:
1H-NMR (300 MHz, DMSO-d_6) for compound 33:

13C-NMR (75 MHz, DMSO-d_6) for compound 33:
1H-NMR (300 MHz, DMSO-d_6) for compound 34:

13C-NMR (75 MHz, DMSO-d_6) for compound 34:
1H-NMR (300 MHz, DMSO-d_6) for compound 35:

13C-NMR (75 MHz, DMSO-d_6) for compound 35:
1H-NMR (300 MHz, DMSO-d_6) for compound 36:

13C-NMR (75 MHz, DMSO-d_6) for compound 36:
1H-NMR (300 MHz, DMSO-d_6) for compound 37:

13C-NMR (75 MHz, DMSO-d_6) for compound 37: