Supporting information for

Enantioselective Addition of Oxazolones to N-Protected Imines Catalyzed by Chiral Thioureas

M. Žabka, A. Malastová, R. Šebesta

Contents

1. General Information ..1
2. General Procedure for the Mannich Reaction ...2
3. Hydrolysis of the adduct 10b ...11
4. Copies of NMR spectra ..12
5. HPLC Spectra ...25
6. Computational data ...36

1. General Information

All reactions were carried out in oven-dried glassware under argon. The commercially available chemicals were used without purification. THF, toluene and dioxane were distilled from Na/benzophenone, CH₂Cl₂ and MeCN from CaH₂ under argon at 760 Torr. Thin layer chromatography (TLC) was performed on pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation, potassium permanganate or phosphomolybdic acid solution dip. Column and flash chromatography were performed on silica gel with particle size 0.040-0.065 mm in diameter.

NMR spectra were acquired on Varian NMR System 300 and 600 spectrometers, running at 300 or 600 MHz for ¹H and 75 or 150 MHz for ¹³C and DEPT, respectively. Chemical shifts (δ) are reported in ppm relative to tetramethylsilane (TMS) as an internal standard. The following abbreviations are used to indicate the multiplicity in ¹H NMR spectra: s, singlet; bs, broad singlet; d, doublet; dd, double doublet; ddd, double double doublet; t, triplet; dt, double triplet; q, quartet; dq, double quartet; p, pentet; m, multiplet. IR spectra were measured at Nikolet IS10 spectrometer. HRMS was measured on a mass spectrometer with H-ESI Orbitrap ionization in positive mode. HPLC was performed on Daicel Chiralpak AD-H and IA columns.
with UV detection at 240 nm. Optical rotation measurements were performed on Jasco P-2000 polarimeter. CD spectra were measured on Jasco J-815 CD spectrometer.

Catalysts 1a, 1b, 2a, 2b, 3, 4 – 5, 6, 7 and 8 were synthesized following the corresponding literature procedures.

Azlactones 9a and 9b were synthesized from the corresponding N-benzoxy amino acids. N-benzoxy alanine, N-benzoxy phenylalanine and N-benzoxy valine were prepared following the literature procedures.

N-benzyldiene-ethanesulfonamide, N-benzylidene-2,4,6-trimethylbenzenesulfonamide, N-benzylidene-2,4,6-tris(isopropyl)benzenesulfonamide and N-benzylidenenaphthalene-2-sulfonamide were synthesized utilizing the corresponding literature procedures.

2. General Procedure for the Mannich Reaction

An oven-dried Schlenk tube was charged with imine (0.1 mmol), azlactone (0.12 mmol, 1.2 eq.), catalyst (0.01 mmol, 10 mol %) and acid co-catalyst (0.01 mmol, 10 mol %) if not stated otherwise. The solvent (0.5 mL) was then added. After stirring at room temperature for 18 h, the solution was concentrated in vacuo and the residue was purified by silica gel column chromatography (eluant petroleum ether/EtOAc) to afford the product.

Following the general procedure, 10a was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 4:1 - 3:1) as a white solid.

1H NMR (300 MHz, CDCl₃): \(\delta \) 7.95 – 7.85 (m, 2H), 7.65 – 7.48 (m, 2H), 7.48 – 7.31 (m, 4H), 7.18 – 7.04 (m, 4H), 6.96 (d, \(J = 8.0 \) Hz, 2H), 5.37 – 5.23 (m, 1H), 4.68 (d, \(J = 10.8 \) Hz, 1H), 2.29 (s, 3H), 1.33 (s, 3H).

13C NMR (75 MHz, CDCl₃): 179.2 (Cq), 161.8 (Cq), 143.2 (Cq), 136.7 (Cq), 135.3 (Cq), 133.1 (CH), 129.1 (CH), 129.0 (CH), 128.7 (CH), 128.2 (CH), 128.1 (CH), 127.9 (CH), 127.1 (CH), 125.3 (Cq), 72.9 (Cq), 62.3 (CH), 21.7 (CH₃), 21.4 (CH₃).

IR (cm⁻¹): 3257, 2959, 2920, 1819, 1651, 1451, 1328, 1292, 1162, 1089, 1001, 911, 874, 811.

MS: \(m/z 457.1 \ [M+Na]^+ \).

HPLC: Chiralpak AD-H column, eluant = hexane/i-PrOH 85:15, flow rate = 0.8 mL.min⁻¹; \(t \) (major) = 19.8 min; \(t \) (minor) = 22.5 min.

The spectral data are in agreement with the literature data.¹⁵

Following the general procedure, 10b was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 6:1 – 5:1) as a white solid.

[α]D²⁰ = +38.5 (c 1.4, CHCl₃, 90:10 er).

1H NMR (300 MHz, CDCl₃): \(\delta \) 7.87 – 7.80 (m, 2H), 7.58 – 7.50 (m, 1H), 7.46 – 7.35 (m, 4H), 7.07 – 6.92 (m, 7H), 5.48 (d, \(J = 10.7 \) Hz, 1H), 4.98 (d, \(J = 10.8 \) Hz, 1H), 2.45 – 2.34 (m, 1H), 2.27 (s, 3H), 1.10 (d, \(J = 6.8 \) Hz, 3H), 0.90 (d, \(J = 6.8 \) Hz, 3H).

13C NMR (75 MHz, CDCl₃): \(\delta \) 179.2 (Cq), 161.2 (Cq), 143.0 (Cq), 137.2 (Cq), 135.1 (Cq), 132.9 (CH), 129.1 (CH), 128.7 (CH), 128.0 (CH), 127.9 (CH), 127.83 (CH), 127.78

(CH), 126.9 (CH), 125.1 (Cq), 79.9 (Cq), 59.4 (CH), 32.1 (CH), 21.4 (CH₃), 16.6 (CH₃), 16.3 (CH₃). IR (cm⁻¹): 3266, 2961, 1816, 1646, 1455, 1334, 1262, 1159, 1095, 1081, 1022, 944, 861. MS: m/z 485.2 [M+Na]⁺. HPLC: Chiralpak AD-H column, eluant = hexane/i-PrOH 85:15, flow rate = 0.8 mL.min⁻¹; t (major) = 17.9 min; t (minor) = 22.1 min.

The spectral data are in agreement with the literature data.¹⁶

\[\text{N-((S)-(R)-4-methyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)(phenyl)methyl)} \]
\[\text{methanesulfonamide (10c)} \]

Following the general procedure, 10c was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 3:1 – 2:1) as a white solid. Rₐ = 0.13 (petroleum ether/EtOAc 3:1).

¹H NMR (300 MHz, DMSO-\text{d₆}): δ 8.08 – 7.96 (m, 3H), 7.76 – 7.58 (m, 5H), 7.49 – 7.32 (m, 3H), 4.69 (d, J = 10.8 Hz, 1H), 2.30 (s, 3H), 1.20 (s, 3H).

¹³C NMR (75 MHz, DMSO-\text{d₆}): 179.6 (Cq), 160.8 (Cq), 136.7 (Cq), 133.5 (CH), 129.6 (CH), 129.4 (CH), 128.8 (CH), 128.7 (CH), 128.6 (CH), 126.2 (Cq), 73.7 (Cq), 63.2 (CH), 41.4 (CH₃), 21.3 (CH₃). IR (cm⁻¹): 3273, 3031, 2936, 1827, 1652, 1454, 1441, 1307, 1298, 1162, 1004, 976, 901, 877, 703. MS: m/z 381.1 [M+Na]⁺. HRMS: calcd. for [C₁₈H₁₈N₂O₄S+H]⁺ ([M+H]⁺): m/z 359.1066, found: 359.1053. HPLC: Daicel IA column, eluant = hexane/i-PrOH 85:15, flow rate = 1.0 mL.min⁻¹; t (major) = 8.2 min; t (minor) = 10.6 min.

\[\text{N-((S)-(R)-4-isopropyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)(phenyl)methyl)} \]
\[\text{methanesulfonamide (10d)} \]

Following the general procedure, 10d was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 3:1) as a white solid. Rₐ = 0.50 (petroleum ether/EtOAc 3:1).

¹H NMR (300 MHz, CDCl₃): δ 7.90 (d, J = 7.3 Hz, 2H), 7.62 – 7.51 (m, 1H), 7.50 – 7.40 (m, 4H), 7.36

\(-7.27\) (m, 3H), 5.40 (d, \(J = 10.6\) Hz, 1H), 5.04 (d, \(J = 10.7\) Hz, 1H), 2.53 (s, 3H), 2.40 – 2.26 (m, 1H), 1.07 (d, \(J = 6.8\) Hz, 3H), 0.97 (d, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 179.1 (Cq), 161.5 (Cq), 136.2 (Cq), 133.0 (CH), 128.8 (CH), 128.7 (CH), 128.1 (CH), 128.0 (CH), 125.1 (Cq), 79.9 (Cq), 59.6 (CH), 41.7 (CH\(_3\)), 32.1 (CH), 16.5 (CH\(_3\)), 16.3 (CH\(_3\)). IR (cm\(^{-1}\)): 3288, 2968, 2915, 2881, 1811, 1652, 1460, 1320, 1289, 1153, 1093, 1065, 1013, 969, 881, 763, 705, 696. MS: \(m/z\) 409.1 [M+Na\(^+\)]. HRMS: calcd. for \([C_{20}H_{22}N_2O_4S+H]\): \(m/z\) 409.1379, found: 409.1367.

HPLC: Daicel IA column, eluant = hexane/i-PrOH 80:20, flow rate = 1 mL.min\(^{-1}\); \(t\) (major) = 6.8 min; \(t\) (minor) = 14.6 min.

\(N\)-((S)-((R))-4-benzyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)(phenyl)methyl)methanesulfonamide (10e)

Following the general procedure, 10e was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 3:1) as a white solid. \(R_F = 0.41\) (petroleum ether/EtOAc 3:1). \(^{1}H\) NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.79 (d, \(J = 7.3\) Hz, 2H), 7.61 – 7.48 (m, 3H), 7.45 – 7.32 (m, 5H), 7.15 – 6.99 (m, 5H), 5.37 (d, \(J = 10.8\) Hz, 1H), 4.98 (d, \(J = 10.8\) Hz, 1H), 3.21 (d, \(J = 13.4\) Hz, 1H), 2.86 (d, \(J = 13.3\) Hz, 1H), 2.50 (s, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 178.3 (Cq), 161.9 (Cq), 136.4 (Cq), 133.3 (Cq), 133.0 (CH), 130.1 (CH), 129.1 (CH), 129.0 (CH), 128.7 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.3 (CH), 125.0 (Cq), 78.2 (Cq), 62.1 (CH), 41.7 (CH\(_3\)), 41.3 (CH\(_2\)). IR (cm\(^{-1}\)): 3273, 3030, 2922, 1816, 1651, 1495, 1320, 1289, 1157, 1057, 980, 878, 710. MS: \(m/z\) 435.1 [M+H\(^+\)]. HRMS: calcd. for \([C_{24}H_{22}N_2O_4S+H]\): \(m/z\) 435.1379, found: 435.1371. HPLC: Daicel IA column, eluant = hexane/i-PrOH 80:20, flow rate = 1 mL.min\(^{-1}\); \(t\) (major) = 9.4 min; \(t\) (minor) = 11.3 min.

\(N\)-((S)-((R))-4-methyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)(phenyl)methyl)naphthalene-2-sulfonamide (10f)
Following the general procedure, 10f was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 3:1) as a white solid. \(R_f = 0.20 \) (petroleum ether/EtOAc 3:1). \(^1H \) NMR (300 MHz, CDCl\(_3\)): \(\delta 8.05 \) (d, \(J = 1.3 \) Hz, 1H), 7.83 – 7.76 (m, 2H), 7.76 – 7.69 (m, 2H), 7.63 – 7.30 (m, 7H), 7.01 – 6.94 (m, 2H), 6.81 – 6.68 (m, 3H), 5.66 (d, \(J = 10.8 \) Hz, 1H), 5.04 (d, \(J = 10.8 \) Hz, 1H), 2.42 – 2.28 (m, 1H), 1.07 (d, \(J = 6.8 \) Hz, 3H), 0.91 (d, \(J = 6.8 \) Hz, 3H). \(^{13}C \) NMR (150 MHz, CDCl\(_3\)): \(\delta 179.2 \) (Cq), 161.3 (Cq), 137.0 (Cq), 134.8 (Cq), 134.5 (Cq), 132.9 (CH), 131.8 (Cq), 129.1 (CH), 128.9 (CH), 128.7 (CH), 128.54 (CH), 128.53 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 127.63 (CH), 127.61 (CH), 127.1 (CH), 125.1 (Cq), 122.0 (CH), 79.8 (Cq), 59.6 (CH), 32.1 (CH), 16.6 (CH\(_3\)), 16.4 (CH\(_3\)). IR (cm\(^{-1}\)): 3253, 3059, 2972, 2928, 1827, 1812, 1653, 1494, 1329, 1294, 1160, 1132, 1060, 1021, 939, 881, 710, 864. MS: \(m/z \) 521.2 [M+Na\(^+\)]. HRMS: calcd. for [C\(_{29}\)H\(_{26}\)N\(_2\)O\(_4\)S]+ ([M+H\(^+\)]: \(m/z \) 499.1692, found: 499.1685. HPLC: Chiralpak AD-H column, eluant = hexane/i-PrOH 85:15, flow rate = 1.0 mL.min\(^{-1}\); \(t_R \) (major) = 17.6 min; \(t_R \) (minor) = 21.8 min.

2,4,6-trimethyl-N-((S)-((R)-4-methyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)(phenyl)methyl)benzenesulfonamide (10g)

Following the general procedure, 10g was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 6:1) as a white solid. \(R_f = 0.21 \) (petroleum ether/EtOAc 6:1). \(^1H \) NMR (300 MHz, CDCl\(_3\)): \(\delta 8.00 – 7.93 \) (m, 2H), 7.63 – 7.56 (m, 1H), 7.53 – 7.45 (m, 2H), 7.19 – 7.11 (m, 5H), 6.75 (s, 2H), 5.30 (d, \(J = 10.4 \) Hz, 1H), 4.56 (d, \(J = 10.4 \) Hz, 1H), 2.47 (s, 6H), 2.22 (s, 3H), 1.31 (s, 3H). \(^{13}C \) NMR (75 MHz, CDCl\(_3\)): \(\delta 179.2 \) (Cq), 161.7 (Cq), 142.2 (Cq), 138.7 (Cq), 135.7 (Cq), 133.7 (Cq), 133.1 (CH), 131.7 (CH), 128.8 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.6 (CH), 125.3 (Cq), 72.8 (Cq), 62.3 (CH), 22.9 (CH\(_3\)), 21.7 (CH\(_3\)), 20.8 (CH\(_3\)). IR (cm\(^{-1}\)): 3317, 3033, 2937, 1818, 1654, 1450, 1330, 1319, 1158, 1001, 913, 685, 661. MS: \(m/z \) 485.2 [M+Na\(^+\)]. HRMS: calcd. for [C\(_{29}\)H\(_{26}\)N\(_2\)O\(_4\)S]+ ([M+H\(^+\)]: \(m/z \) 463.1692, found: 463.1686. HPLC: Daicel IA column, eluant = hexane/i-PrOH 95:5, flow rate = 0.8 mL.min\(^{-1}\); \(t_R \) (minor) = 17.7 min; \(t_R \) (major) = 19.1 min.
Following the general procedure, 10h was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 6:1) as a white solid. R_f = 0.30 (petroleum ether/EtOAc 6:1). ¹H NMR (300 MHz, CDCl₃): δ 7.88 – 7.81 (m, 2H), 7.59 – 7.50 (m, 1H), 7.47 – 7.39 (m, 2H), 7.14 – 6.92 (m, 5H), 6.70 (s, 2H), 5.56 (d, J = 10.4 Hz, 1H), 4.89 (d, J = 10.4 Hz, 1H), 2.47 (s, 6H), 2.38 – 2.24 (m, 1H), 2.19 (s, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 179.1 (Cq), 161.3 (Cq), 141.9 (Cq), 138.3 (Cq), 135.5 (Cq), 134.5 (Cq), 132.9 (CH), 131.6 (CH), 128.7 (CH), 127.9 (2xCH), 127.8 (CH), 127.5 (CH), 125.2 (Cq), 79.8 (Cq), 59.5 (CH), 32.1 (CH₃), 20.8 (CH₃), 16.4 (CH₃), 16.3 (CH₃). IR (cm⁻¹): 3030, 2935, 1809, 1651, 1452, 1331, 1291, 1175, 1021, 882, 701, 660. MS: m/z 513.2 [M+Na]⁺. HRMS: calcd. for [C₂₈H₃₀N₂O₄S+H]⁺ (M+H)⁺: m/z 491.2005, found: 491.1998. HPLC: Daicel IA column, eluant = hexane/i-PrOH 97:3, flow rate = 0.75 mL.min⁻¹; t (major) = 14.6 min; t (minor) = 15.9 min.

Following the general procedure, 10i was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 6:1) as a colorless oil. R_f = 0.35 (petroleum ether/EtOAc 6:1). ¹H NMR (300 MHz, CDCl₃): δ 7.85 – 7.78 (m, 2H), 7.60 – 7.51 (m, 1H), 7.50 – 7.38 (m, 2H), 7.07 – 6.83 (m, 7H), 5.66 (d, J = 9.5 Hz, 1H), 4.86 (d, J = 9.5 Hz, 1H), 4.06 – 3.88 (m, 2H), 2.88 – 2.69 (m, 1H), 1.77 (s, 3H), 1.21 (d, J = 6.7 Hz, 6H), 1.17 (d, J = 6.9 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃): δ 179.3 (Cq), 161.7 (Cq), 152.7 (Cq), 149.6 (Cq), 135.8 (Cq), 133.3 (Cq), 132.1
(CH), 128.8 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 125.3 (Cq), 123.4 (CH), 72.8 (Cq), 62.0 (CH), 34.1 (CH), 30.0 (CH), 24.8 (CH3), 24.7 (CH3), 23.6 (CH3), 21.9 (CH3).

IR (cm⁻¹): 3061, 2956, 2926, 1821, 1650, 1600, 1451, 1321, 1293, 1178, 1004, 875, 700, 661.

MS: *m/z* 569.3 [M+Na]⁺. **HRMS:** calc. for [C₃₂H₃₈N₂O₄S+H]⁺ ([M+H]⁺): *m/z* 547.2631, found: 547.2623.

HPLC: Daicel IA column, eluant = hexane/i-PrOH 94:6, flow rate = 0.8 mL.min⁻¹; *t* (minor) = 8.9 min; *t* (major) = 9.6 min.

\[
\text{N-((S)-(R)-4-isopropyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)(4-methoxyphenyl)methyl)-4-methylbenzenesulfonamide (10j)}
\]

Following the general procedure, 10k was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 5:1 to 4:1) as a white solid. **Rf** = 0.29 (petroleum ether/EtOAc 3:1). **1H NMR (300 MHz, CDCl₃):** δ 7.91 – 7.81 (m, 2H), 7.56 – 7.52 (m, 1H), 7.45 – 7.36 (m, 4H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.96 (d, *J* = 8.3 Hz, 2H), 6.50 (d, *J* = 8.5 Hz, 2H), 5.40 (d, *J* = 1.5 Hz, 1H), 4.93 (d, *J* = 10.7 Hz, 1H), 3.65 (s, 3H), 2.38 – 2.31 (m, 1H), 2.29 (s, 3H), 1.05 (d, *J* = 6.7 Hz, 3H), 0.90 (d, *J* = 6.8 Hz, 3H). **13C NMR (150 MHz, CDCl₃):** δ 179.2 (Cq), 161.3 (Cq), 159.1 (Cq), 142.9 (Cq), 137.4 (Cq), 132.9 (CH), 129.1 (CH), 129.0 (CH), 128.0 (CH), 127.3 (Cq), 127.0 (CH), 125.2 (Cq), 113.3 (CH), 80.0 (Cq), 59.0 (CH), 55.1 (CH3), 32.1 (CH), 21.4 (CH3), 16.4 (CH3), 16.3 (CH3). **IR (cm⁻¹):** 3242, 2957, 2931, 1815, 1647, 1612, 1513, 1324, 1241, 1159, 1023, 945, 849, 690. **MS:** 515.1 [M+Na]⁺. **HRMS:** calc. for [C₂₇H₂₈N₂O₅S+H]⁺ ([M+H]⁺): *m/z* 493.1797, found: 493.1788. **HPLC:** Daicel IA column, eluant = hexane/i-PrOH 90:10, flow rate = 1 mL.min⁻¹; *t* (major) = 21.8 min; *t* (minor) = 26.1 min.

The spectral data are in agreement with the literature data.¹⁶

\[
\text{N-((S)-(4-chlorophenyl)((R)-4-isopropyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)methyl)-4-methylbenzenesulfonamide (10k)}
\]
Following the general procedure, 10k was isolated after silica gel chromatography (eluant petroleum ether/EtOAc 5:1 to 4:1) as a white solid. \(R_F = 0.47 \) (petroleum ether/EtOAc 3:1). \(^1 \)H NMR (600 MHz, CDCl\(_3\)): \(\delta \) 7.81 (d, \(J = 8.1 \) Hz, 2H), 7.52 (t, \(J = 7.4 \) Hz, 1H), 7.40 (t, \(J = 7.7 \) Hz, 2H), 7.35 (d, \(J = 8.1 \) Hz, 2H), 6.99 – 6.89 (m, 6H), 5.61 (d, \(J = 10.7 \) Hz, 1H), 4.93 (d, \(J = 10.7 \) Hz, 1H), 2.36 – 2.26 (m, 2H), 1.03 (d, \(J = 6.7 \) Hz, 3H), 0.90 (d, \(J = 6.8 \) Hz, 3H). \(^{13} \)C NMR (150 MHz, CDCl\(_3\)): \(\delta \) 178.8 (Cq), 161.5 (Cq), 143.4 (Cq), 137.1 (Cq), 133.9 (Cq), 133.7 (Cq), 133.0 (CH), 129.3 (CH), 129.1 (CH), 128.7 (CH), 128.1 (CH), 128.0 (CH), 126.9 (CH), 124.9 (Cq), 79.6 (Cq), 58.8 (CH), 32.1 (CH), 21.4 (CH\(_3\)), 16.4 (CH\(_3\)), 16.3 (CH\(_3\)). IR (cm\(^{-1}\)): 3263, 2968, 2924, 1809, 1493, 1450, 1331, 1290, 1160, 1090, 1014, 880, 696. MS: 519.1 [M+Na]\(^+\). HRMS: calcd. for \([\text{C}_{26}\text{H}_{25}\text{ClN}_2\text{O}_4\text{S}+\text{H}]^+ \): \(m/z \) 497.1302, found: 497.1293.

HPLC: Daicel IA column, eluant = hexane/i-PrOH 90:10, flow rate = 1 mL.min\(^{-1}\); \(t \) (major) = 16.1 min; \(t \) (minor) = 26.1 min.

The spectral data are in agreement with the literature data.\(^6\)

\((S)-2-[[1R,2R]-2-(N’-(p-toluenesulfonyl)cyclohexyl)thioureido]-N-benzyl-N,3,3-trimethylbutanamide (1c)\)

\((S)-2-(3-((1R,2R)-2-aminocyclohexyl)thioureido)-N-benzyl-N,3,3-trimethylbutanamide \) (100 mg, 0.26 mmol) was dissolved in dry THF (3.5 mL) and Et\(_3\)N (43 \(\mu \)L, 0.31 mmol, 1.2 eq.) was added. A solution of TsCl (53.7 mg, 0.28 mmol, 1.1 eq.) in THF (1 mL) was added dropwise and the reaction was stirred at room temperature. After 2 hours, the solvent was evaporated \textit{in vacuo} and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate 1.2:1) to give thiourea \(\textbf{1c} \) (120 mg, 86 % yield) as a white crystalline solid.
Mp. 109 – 113 °C. [α]D20 = +5.2 (c 1.00, CHCl3). 1H NMR (300 MHz, CDCl3; compound exists as a 2.4:1 mixture of rotamers, the major rotamer is denoted by *): 7.70 (d, J = 8.2 Hz, 2H*), 7.65 (d, J = 8.1 Hz, 2H), 7.45 – 7.27 (m, 4H* + 4H), 7.26 – 7.19 (m, 3H* + 3H), 6.83 (d, J = 9.4 Hz, 1H*), 6.80 – 6.70 (m, 1H* + 1H), 6.36 (d, J = 8.3 Hz, 1H*), 6.18 (d, J = 8.1 Hz, 1H), 5.82 (s, 1H), 5.76 (d, J = 9.4 Hz, 1H*), 5.18 (d, J = 14.9 Hz, 1H*), 5.05 (d, J = 15.3 Hz, 1H), 4.53 (d, J = 15.6 Hz, 1H), 4.27 (ddd, J = 13.8, 11.3, 3.6 Hz, 1H* + 1H), 4.06 (d, J = 15.0 Hz, 1H*), 3.19 (s, 3H*), 2.86 (s, 3H), 2.85 – 2.77 (m, 1H* + 1H), 2.41 (s, 3H*), 2.39 (s, 3H), 2.07 – 1.80 (m, 4H* + 4H), 1.64 – 1.49 (m, 3H* + 3H), 1.34 – 1.14 (m, 4H* + 3H), 1.08 (s, 9H*), 1.03 (s, 9H), 0.98 – 0.83 (m, 2H* + 2H). 13C NMR (75 MHz, CDCl3): δ 183.8 (Cq), 183.4 (Cq), 172.4 (Cq), 171.9 (Cq), 143.0 (Cq), 143.0 (Cq), 138.4 (Cq), 138.2 (Cq), 136.5 (Cq), 135.8 (Cq), 129.6 (CH), 129.5 (CH), 129.0 (CH), 128.8 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.6 (CH), 127.0 (CH), 127.0 (CH), 60.0 (CH), 59.7 (CH), 59.1 (CH), 58.8 (CH), 56.7 (CH), 54.5 (CH2), 51.27 (CH2), 37.0 (Cq), 36.7 (Cq), 36.3 (CH3), 33.9 (CH2), 33.7 (CH2), 33.4 (CH3), 32.7 (CH2), 32.6 (CH2), 27.0 (CH3), 24.6 (CH2), 24.2 (CH2), 21.7 (CH3), 21.6 (CH3). IR (cm⁻¹): 3320, 3086, 2933, 2859, 1619, 1527, 1495, 1449, 1416, 1398, 1317, 1234, 1155, 1091, 1071, 961, 899, 700, 661. MS: m/z 567.2 [M+Na]+. HRMS: calcd. for [C28H40N4O3S+Na]+ ([M+Na]+): m/z 567.2440, found: 567.2430.
3. Hydrolysis of the adduct 10b

(R)-2-benzamido-3-methyl-2-((S)-(4-methylphenylsulfonamido)(phenyl)methyl)butanoic acid (11)

Adduct 10b (50 mg, 1.1 mmol, 1 eq.) was dissolved in MeCN (1.0 mL) and conc. HCl (0.17 ml, 2.2 mmol, 2 eq.) was added. The mixture was stirred at rt for 3 h, then rinsed with MeCN (1 mL). The solvent was evaporated to give 11 as a pale yellow solid (52 mg, quantitative yield).

\[^{[α]}D_{20} = +85.5\ (c 0.5, \text{EtOH})\].

\[^{1}H\ NMR\ (600\ MHz, DMSO-\text{d}_6)\]: \(δ\ 8.36\ (bs, 1H), 7.66\ (d, J = 7.5\ Hz, 2H), 7.56 – 7.52\ (m, 2H), 7.46\ (t, J = 7.6\ Hz, 2H), 7.31\ (d, J = 8.0\ Hz, 2H), 7.06 – 6.91\ (m, 7H), 6.67\ (bs, 1H), 5.66\ (d, J = 7.8\ Hz, 1H), 2.45\ (bs, 1H), 2.21\ (s, 3H), 1.07\ (d, J = 6.6\ Hz, 3H), 1.02\ (d, J = 6.7\ Hz, 3H)\].

\[^{13}C\ NMR\ (150\ MHz, DMSO-\text{d}_6)\]: \(δ\ 172.0, 168.3, 142.0, 138.8, 137.4, 135.6, 132.0, 129.1, 129.0, 128.4, 127.8, 127.5, 127.4, 126.9, 71.4, 32.6, 21.3, 18.9, 18.7\].

\(IR\ (\text{cm}^{-1})\): 3351 (broad), 3060, 2969, 2932, 1713, 1652, 1599, 1516, 1487, 1318, 1148, 1089, 809, 702, 667. \(MS\): 481.2 \([\text{M}+\text{H}]^{+}\).

The spectral data are in agreement with the literature data.\(^{16}\)
4. Copies of NMR spectra

1H NMR (300 MHz, CDCl$_3$) spectrum of 10a

13C NMR (75 MHz, CDCl$_3$) spectrum of 10a
1H NMR (300 MHz, CDCl$_3$) spectrum of 10b

13C NMR (75 MHz, CDCl$_3$) spectrum of 10b
1H NMR (300 MHz, DMSO-d_6) spectrum of 10c

13C NMR (75 MHz, DMSO-d_6) spectrum of 10c
1H NMR (300 MHz, CDCl$_3$) spectrum of 10d

13C NMR (75 MHz, CDCl$_3$) spectrum of 10d
1H NMR (300 MHz, CDCl$_3$) spectrum of 10e

13C NMR (75 MHz, CDCl$_3$) spectrum of 10e
1H NMR (300 MHz, CDCl$_3$) spectrum of 10f

13C NMR (75 MHz, CDCl$_3$) spectrum of 10f
1H NMR (300 MHz, CDCl$_3$) spectrum of 10g

13C NMR (75 MHz, CDCl$_3$) spectrum of 10g
1H NMR (300 MHz, CDCl$_3$) spectrum of 10h

13C NMR (75 MHz, CDCl$_3$) spectrum of 10h
1H NMR (300 MHz, CDCl$_3$) spectrum of 10i

13C NMR (75 MHz, CDCl$_3$) spectrum of 10i
1H NMR (300 MHz, CDCl$_3$) spectrum of 10j

13C NMR (150 MHz, CDCl$_3$) spectrum of 10j
1H NMR (600 MHz, CDCl$_3$) spectrum of 10k

13C NMR (150 MHz, CDCl$_3$) spectrum of 10k
^{1}H NMR (300 MHz, CDCl$_3$) spectrum of 1c

^{13}C NMR (75 MHz, CDCl$_3$) spectrum of 1c
1H NMR (600 MHz, DMSO-d_6) spectrum of 11

13C NMR (150 MHz, DMSO-d_6) spectrum of 11
5. HPLC Spectra

HPLC Trace of 10a

[Graph showing UV, Retention Time, Area Percent with peaks at specific times and retention values]
HPLC Trace of 10b
HPLC Trace of 10c
HPLC Trace of 10d
HPLC Trace of 10e
HPLC Trace of 10f
HPLC Trace of 10g
HPLC Trace of 10h
HPLC Trace of 10i

Signal 3: VWD1 A, Wavelength=240 nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU * s]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.256</td>
<td>VV</td>
<td>0.1958</td>
<td>2785.01318</td>
<td>211.58266</td>
<td>31.3186</td>
</tr>
<tr>
<td>2</td>
<td>7.470</td>
<td>VV</td>
<td>0.2403</td>
<td>3606.66479</td>
<td>217.19028</td>
<td>40.5584</td>
</tr>
<tr>
<td>3</td>
<td>7.908</td>
<td>VV</td>
<td>0.1628</td>
<td>1748.85168</td>
<td>152.66356</td>
<td>19.6665</td>
</tr>
<tr>
<td>4</td>
<td>8.546</td>
<td>VV</td>
<td>0.1711</td>
<td>751.99091</td>
<td>66.55000</td>
<td>8.4564</td>
</tr>
</tbody>
</table>

Totals:

- **8892.52057**
- **647.98649**

UV Retention Time

Area Percent
HPLC Trace of 10k

Signal 2: VWD1 A, Wavelength=240 nm

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime [min]</th>
<th>Width [min]</th>
<th>Area [mAU]</th>
<th>Height [s]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.843</td>
<td>0.6742</td>
<td>5296.04443</td>
<td>120.19579</td>
<td>49.7991</td>
</tr>
<tr>
<td>2</td>
<td>26.144</td>
<td>0.7584</td>
<td>5338.78516</td>
<td>107.24803</td>
<td>50.2009</td>
</tr>
</tbody>
</table>

Totals: 1.06348e4 227.44382

Signal 3: VWD1 A, Wavelength=240 nm

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime [min]</th>
<th>Width [min]</th>
<th>Area [mAU]</th>
<th>Height [s]</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.895</td>
<td>0.6757</td>
<td>1.32747e4</td>
<td>299.57764</td>
<td>91.4540</td>
</tr>
<tr>
<td>2</td>
<td>26.462</td>
<td>0.7578</td>
<td>1.24044533</td>
<td>25.07267</td>
<td>8.5460</td>
</tr>
</tbody>
</table>

Totals: 1.45152e4 324.65030
HPLC Trace of 101

Signal 3: VWD1 A, Wavelength=240 nm

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.150</td>
<td>BB</td>
<td>0.5087</td>
<td>1.10123e4</td>
<td>323.92801</td>
<td>50.0486</td>
</tr>
<tr>
<td>2</td>
<td>26.016</td>
<td>BB</td>
<td>0.7895</td>
<td>1.09909e4</td>
<td>212.61414</td>
<td>49.9514</td>
</tr>
</tbody>
</table>

Totals:
2.20033e4 536.54214

Signal 3: VWD1 A, Wavelength=240 nm

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU]</th>
<th>Height [mAU]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.142</td>
<td>BB</td>
<td>0.5166</td>
<td>2.73001e4</td>
<td>784.62091</td>
<td>90.1855</td>
</tr>
<tr>
<td>2</td>
<td>26.074</td>
<td>BB</td>
<td>0.7941</td>
<td>2970.97119</td>
<td>57.17003</td>
<td>9.8145</td>
</tr>
</tbody>
</table>

Totals:
3.02711e4 841.79094
6. Computational data

CD spectra

Comparison of theoretical and experimental ECD spectra of derivate (S,R)-10b; red curve - experimental spectrum; blue curve - calculated conformationally averaged spectrum (DFT, M06, def2_TZVP).

Comparison of theoretical and experimental ECD spectra of derivate (S,R)-10a; red curve - experimental spectrum; blue curve - calculated conformationally averaged spectrum (DFT, M06, def2_TZVP).

Method:

The structure of derivates 10a,b were drawn and optimized by AM1 method in Spartan 8. Then the conformation search was done using AM1 method. The conformers with ΔE<20 kJ/mol were optimized at HF level using base 3-21G. After geometry optimization, which

17 Spartan '08, Wavefunction, Inc., Irvine, CA.
was done at DFT,19 B3-LYP, def2-TZVP level in Turbomole20, calculation of Boltzmann distribution of conformers was performed.20 Two most stable conformers accounted for 88\% and 7\% (more than 95\% all conformers) for compound (\textit{S,R})-\textbf{10a} and 86\% and 9\% for compound (\textit{S,R})-\textbf{10b}. ECD spectra of these conformers were calculated at DFT level using functional M06 and basis set def2-TZVP.21 The resulted calculated ECD spectrum is conformationally averaged spectrum. The transition states \textbf{TS1} and \textbf{TS2} were pre-optimized by AM1 method and then optimized by HF using 3-21G bases set in program Spartan 8.17 They were confirmed by one negative vibration corresponding to formation of C-C bond.

TURBOMOLE V6.6, TURBOMOLE GmbH, Karlsruhe, 2014.

\((S,R)-10a\) confl

\[
E = -1736.08689377407 \text{ au}
\]

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 c</td>
<td>2.98471791010429</td>
</tr>
<tr>
<td>2 c</td>
<td>2.30759420281860</td>
</tr>
<tr>
<td>3 n</td>
<td>4.48825281665314</td>
</tr>
<tr>
<td>4 c</td>
<td>6.08982879734090</td>
</tr>
<tr>
<td>5 o</td>
<td>5.38000140955355</td>
</tr>
<tr>
<td>6 o</td>
<td>1.8066394057417</td>
</tr>
<tr>
<td>7 c</td>
<td>8.60104309488673</td>
</tr>
<tr>
<td>8 c</td>
<td>13.3761764888845</td>
</tr>
<tr>
<td>9 c</td>
<td>10.13782641323535</td>
</tr>
<tr>
<td>10 c</td>
<td>9.47140423331508</td>
</tr>
<tr>
<td>11 c</td>
<td>11.84786037874797</td>
</tr>
<tr>
<td>12 c</td>
<td>12.51797145904824</td>
</tr>
<tr>
<td>13 h</td>
<td>9.46640814284088</td>
</tr>
<tr>
<td>14 h</td>
<td>8.26557874447010</td>
</tr>
<tr>
<td>15 h</td>
<td>12.5160107606746</td>
</tr>
<tr>
<td>16 h</td>
<td>13.7026838081126</td>
</tr>
<tr>
<td>17 h</td>
<td>15.23379281344545</td>
</tr>
<tr>
<td>18 c</td>
<td>2.03786416140488</td>
</tr>
<tr>
<td>19 h</td>
<td>3.79879212760490</td>
</tr>
<tr>
<td>20 h</td>
<td>1.6180627020437</td>
</tr>
<tr>
<td>21 h</td>
<td>0.52424830962651</td>
</tr>
<tr>
<td>22 c</td>
<td>-0.16730018204207</td>
</tr>
<tr>
<td>23 h</td>
<td>-0.50624416399499</td>
</tr>
<tr>
<td>24 n</td>
<td>-2.27574400417923</td>
</tr>
<tr>
<td>25 h</td>
<td>-2.02426262059363</td>
</tr>
<tr>
<td>26 c</td>
<td>0.09902622448569</td>
</tr>
<tr>
<td>27 c</td>
<td>0.66131352821993</td>
</tr>
<tr>
<td>28 c</td>
<td>-0.43639374297370</td>
</tr>
<tr>
<td>29 c</td>
<td>0.90901786915697</td>
</tr>
<tr>
<td>30 c</td>
<td>1.18724190217353</td>
</tr>
<tr>
<td>31 c</td>
<td>-0.15195783819938</td>
</tr>
<tr>
<td>32 h</td>
<td>-1.10335137261992</td>
</tr>
<tr>
<td>33 h</td>
<td>1.32868716677028</td>
</tr>
<tr>
<td>34 h</td>
<td>1.80777169988250</td>
</tr>
<tr>
<td>35 h</td>
<td>-0.57758971634682</td>
</tr>
<tr>
<td>36 h</td>
<td>0.87320790373849</td>
</tr>
<tr>
<td>37 s</td>
<td>-4.88075438588272</td>
</tr>
<tr>
<td>38 o</td>
<td>-5.71231929796933</td>
</tr>
<tr>
<td>39 o</td>
<td>-4.37097085178251</td>
</tr>
</tbody>
</table>
(S,R)- 10a conf 2

\[E = -1735.97559848424 \text{ au} \]

1 c	-0.05463780616621	1.15367472049747	3.86822770561560
2 c	2.5463200847714	1.2382685714399	2.59895026447482
3 n	2.35099120420046	3.39976510690217	0.88644732641616
4 c	0.17225345814356	4.36407768973782	1.18784549076344
5 o	-1.39423248012593	3.19871801974721	2.93970126829794
6 o	-0.90821207713028	-0.26626562018940	5.38944172631369
7 c	-0.88139217668699	6.5726355757458	-0.1024764543513
8 c	-2.82635767911511	10.76582065229296	-2.62100615798335
9 c	-3.7645272240496	7.3310467690106	0.3160313583767
10 c	0.6365242091967	7.9338100598516	-1.78655426263490
11 c	-0.3303621125714	10.0180423479512	-3.03673849395506
12 c	-4.33921902019090	9.4222307162502	-0.9457792186152
13 h	-4.5885364298468	6.2810960304415	1.6184557848292
14 h	2.56836911497469	7.33679025828726	-2.0858827132240
15 h	0.84511281000267	11.06637831503339	-4.3372782563867
16 h	-6.27408143984394	10.00056510227005	-0.61927248070791
17 h	-3.58216449812929	12.39513569656755	-3.60159959238576
18 c	4.58625810435680	1.68577521555995	4.60985980227808
19 h	4.18488891634533	3.40785896249210	5.6683571964438
20 h	6.42527463913237	1.88290010558079	3.7108643093633
21 h	6.4134966960220	0.10204313450026	5.9282439888476
22 c	2.97508744076705	-1.2975808346143	1.1630021024245
(S,R)- 10b confl

E = -1814.68148128048 au

1 c -2.78914382489206 2.0813355294096 2.85447050335637 2.55057358970401
2 c -2.23069789076413 2.6279554638183 0.07059238553372 0.307606497521207
3 n -4.32938721948444 1.42146502489586 -1.24597513976217 0.4112564939462
4 c -5.78566548318111 0.48234017659571 0.07771705095660 2.92188048690323
5 o -5.03849902990001 0.07059238553372 0.77717050956600 2.92188048690323
6 o -1.62076138410131 2.58732668787603 4.72006647453695

23 h 2.65530314188584 -2.78317205717758 2.55057358970401
24 n 0.9544669291772 -1.57145142085444 -0.73501634705634
25 h 1.2128561624884 -0.51813654968048 -2.3124172268985
26 c 5.61603575026113 -1.64499815594711 0.08765072859522
27 c 10.4480566469427 -2.4768542683681 0.08765072859522
28 c 6.64971596446395 0.03067979042677 -1.67237454859481
29 c 7.0366507783793 -3.73849612313321 0.82696686805158
30 c 9.43662877426775 -4.1534376566882 -0.1598433269616
31 c 9.04593133545638 -0.38451146638304 -2.661308852008
32 h 5.59151604477527 1.68426343186746 -2.2440649249803
33 h 6.24191596566905 -5.07668384957142 2.15669135798119
34 h 10.5060765175884 -5.79583253075665 0.42940958185233
35 h 9.8209860858518 0.93158863928268 -4.02390743016933
36 h 12.3132725030987 -2.8000475209584 -2.68608508692190
37 s -0.17094561620234 -4.41430946387959 -1.5194317279185
38 o 0.84535525226358 -6.19070995838749 0.27191432185741
39 o 0.18831263087845 -3.70668384957142 -4.19853121394752
40 c -8.6850444646204 -3.87066152141927 -0.14791385060981
41 c -3.48005734975915 -4.17317315494024 -0.97814279378781
42 c -7.6969139457103 -3.74848716841025 -2.58843575548493
43 c -7.00263956414005 -4.14499003317896 1.87177667081475
44 c -4.41883857345687 -4.30441581571778 1.47753515075503
45 c -5.11032637767902 -3.90036285274448 -3.0181534485560
46 h -8.96486519357677 -3.54159733535230 -4.18320172491184
47 h -7.72631814752021 -4.2371151389930 3.78529169134038
48 h -3.14573397346336 -4.5241917387359 -3.06032167032322
49 h -4.3565982748434 -3.83157870581062 -4.91575495705466
50 c -11.49125233463321 -3.7646664918501 0.307606497521207
51 h -12.48490520625542 -2.93446603823430 -1.29549724662649
52 h -11.9373926020287 -2.65766015728619 1.98980667493392
53 h -12.25844996367797 -5.66183548365258 0.60204045913064
\[(S,R)-10b \text{ conf2}\]

\[
E = -1814.67947911740 \text{ au}
\]

<table>
<thead>
<tr>
<th></th>
<th>x (Å)</th>
<th>y (Å)</th>
<th>z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>-0.07253896230980</td>
<td>1.03768857683761</td>
<td>3.51280559824877</td>
</tr>
<tr>
<td>2c</td>
<td>2.40541134475358</td>
<td>1.37365569662763</td>
<td>2.04453651704672</td>
</tr>
<tr>
<td>3n</td>
<td>1.82475283540422</td>
<td>3.45261532677169</td>
<td>0.31233805744655</td>
</tr>
<tr>
<td>4c</td>
<td>-0.42133531468702</td>
<td>4.17167908019238</td>
<td>0.75881446849058</td>
</tr>
<tr>
<td>5o</td>
<td>-1.70307172151612</td>
<td>2.89140490523464</td>
<td>2.64931079570415</td>
</tr>
<tr>
<td>6o</td>
<td>-0.67216324155020</td>
<td>-0.43050618483089</td>
<td>5.10989021438427</td>
</tr>
<tr>
<td>7c</td>
<td>-1.81218631087216</td>
<td>6.21823959589982</td>
<td>-0.48010687282574</td>
</tr>
<tr>
<td>8c</td>
<td>-4.39633579744588</td>
<td>10.1305444656252</td>
<td>-2.87604441704380</td>
</tr>
<tr>
<td>9c</td>
<td>-4.32477680924392</td>
<td>6.73091458705829</td>
<td>0.15206583332512</td>
</tr>
<tr>
<td>10c</td>
<td>-0.60030656125758</td>
<td>7.68268519120871</td>
<td>-2.3185230126733</td>
</tr>
<tr>
<td>11c</td>
<td>-1.89011912709978</td>
<td>9.62671446073662</td>
<td>-3.50716854636786</td>
</tr>
<tr>
<td>12c</td>
<td>-5.60624267643677</td>
<td>8.6829622419453</td>
<td>-1.04792836118268</td>
</tr>
<tr>
<td>13h</td>
<td>-5.26162669502903</td>
<td>5.60115278679363</td>
<td>1.57254717155974</td>
</tr>
<tr>
<td>14h</td>
<td>1.34801658961353</td>
<td>7.27786712802079</td>
<td>-2.78396833607817</td>
</tr>
<tr>
<td>15h</td>
<td>-0.94356718497421</td>
<td>10.75602104993912</td>
<td>-4.92631652245159</td>
</tr>
<tr>
<td>16h</td>
<td>-7.55255791796765</td>
<td>9.07261351754335</td>
<td>-0.55271817819285</td>
</tr>
<tr>
<td>17h</td>
<td>-5.39973051942444</td>
<td>11.65115634967459</td>
<td>-3.80781327028904</td>
</tr>
<tr>
<td>18c</td>
<td>4.62428220745041</td>
<td>2.13074616781847</td>
<td>3.84449957285245</td>
</tr>
<tr>
<td>19h</td>
<td>6.20580785512014</td>
<td>2.5265348909058</td>
<td>2.5782285899124</td>
</tr>
<tr>
<td>20c</td>
<td>2.93297448829707</td>
<td>-1.12510762365355</td>
<td>0.56183459679258</td>
</tr>
<tr>
<td>21h</td>
<td>2.88972036982435</td>
<td>-2.63839244275478</td>
<td>1.95295624992940</td>
</tr>
<tr>
<td>22n</td>
<td>0.76325607514817</td>
<td>-1.60074694368494</td>
<td>-1.1272989033632</td>
</tr>
<tr>
<td>23h</td>
<td>0.79818157842886</td>
<td>-0.58014908603823</td>
<td>-2.74596164334991</td>
</tr>
<tr>
<td>24c</td>
<td>5.45534292146931</td>
<td>-1.25253253508584</td>
<td>-0.81623895526257</td>
</tr>
<tr>
<td>25c</td>
<td>10.03915042155192</td>
<td>-1.74168296240794</td>
<td>-3.42861651763434</td>
</tr>
<tr>
<td>26c</td>
<td>6.25485273862884</td>
<td>0.62496506546984</td>
<td>-2.49445690212589</td>
</tr>
<tr>
<td>27c</td>
<td>6.98099276416560</td>
<td>-3.37894258690572</td>
<td>-0.48086228858285</td>
</tr>
<tr>
<td>28c</td>
<td>9.25580863576088</td>
<td>-3.62361451165008</td>
<td>-1.77305787572272</td>
</tr>
<tr>
<td>29c</td>
<td>8.52896985620790</td>
<td>0.37955765771987</td>
<td>-3.7863671545685</td>
</tr>
<tr>
<td>30h</td>
<td>5.10652102411963</td>
<td>2.29286554694154</td>
<td>-2.76941807408448</td>
</tr>
<tr>
<td>31h</td>
<td>6.35999373330215</td>
<td>-4.87692216022692</td>
<td>0.76803221615116</td>
</tr>
<tr>
<td>32h</td>
<td>10.40729501056247</td>
<td>-5.29175886672080</td>
<td>-1.49201407107248</td>
</tr>
<tr>
<td>33h</td>
<td>9.1226603495470</td>
<td>1.85379038729740</td>
<td>-5.07644636947356</td>
</tr>
<tr>
<td>34h</td>
<td>11.80846849073423</td>
<td>-1.92879846741355</td>
<td>-4.43987058967050</td>
</tr>
<tr>
<td>35s</td>
<td>-0.22868119536826</td>
<td>-4.53528846345366</td>
<td>-1.72970909670801</td>
</tr>
<tr>
<td>36</td>
<td>o</td>
<td>1.00384743049636</td>
<td>-6.17237640561751</td>
</tr>
<tr>
<td>37</td>
<td>o</td>
<td>-0.01719655598091</td>
<td>-4.94029478212935</td>
</tr>
<tr>
<td>38</td>
<td>e</td>
<td>-8.66497806693192</td>
<td>-4.13179199089182</td>
</tr>
<tr>
<td>39</td>
<td>c</td>
<td>-3.50815642789188</td>
<td>-4.46323051259665</td>
</tr>
<tr>
<td>40</td>
<td>c</td>
<td>-6.85740906520356</td>
<td>-4.5327636291353</td>
</tr>
<tr>
<td>41</td>
<td>c</td>
<td>-7.82774422187093</td>
<td>-4.30801955383361</td>
</tr>
<tr>
<td>42</td>
<td>c</td>
<td>-5.26895818990560</td>
<td>-3.3500816901865</td>
</tr>
<tr>
<td>43</td>
<td>c</td>
<td>-4.29284296813443</td>
<td>-4.57396822984721</td>
</tr>
<tr>
<td>44</td>
<td>h</td>
<td>-7.46204884738858</td>
<td>-4.62177978337101</td>
</tr>
<tr>
<td>45</td>
<td>h</td>
<td>-9.19586390219342</td>
<td>-4.21320171299018</td>
</tr>
<tr>
<td>46</td>
<td>h</td>
<td>-4.63162084261311</td>
<td>-4.28129723564757</td>
</tr>
<tr>
<td>47</td>
<td>h</td>
<td>-2.91948831586699</td>
<td>-4.67751581286059</td>
</tr>
<tr>
<td>48</td>
<td>c</td>
<td>-11.44540198023384</td>
<td>-4.44550698262473</td>
</tr>
<tr>
<td>49</td>
<td>h</td>
<td>-11.79938089714622</td>
<td>-3.89059828763794</td>
</tr>
<tr>
<td>50</td>
<td>h</td>
<td>-12.23106180270494</td>
<td>-6.34027447940449</td>
</tr>
<tr>
<td>51</td>
<td>h</td>
<td>-12.49776032298449</td>
<td>-3.17256211982511</td>
</tr>
<tr>
<td>52</td>
<td>c</td>
<td>5.40843780074136</td>
<td>0.01578311280871</td>
</tr>
<tr>
<td>53</td>
<td>h</td>
<td>6.09343139224024</td>
<td>-1.65723397377251</td>
</tr>
<tr>
<td>54</td>
<td>h</td>
<td>3.85173809208522</td>
<td>-0.54640225203295</td>
</tr>
<tr>
<td>55</td>
<td>h</td>
<td>6.94848589866689</td>
<td>0.69081323148413</td>
</tr>
<tr>
<td>56</td>
<td>c</td>
<td>4.04277426719995</td>
<td>4.55660942515576</td>
</tr>
<tr>
<td>57</td>
<td>h</td>
<td>5.70367324880417</td>
<td>5.11878459398860</td>
</tr>
<tr>
<td>58</td>
<td>h</td>
<td>2.49935253443878</td>
<td>4.27853871394493</td>
</tr>
</tbody>
</table>

| 59 | h | 3.55270860074028 | 6.11970919899506 | 4.07136703903182 |
Transition state model:

The observed stereochemistry of the products can be rationalized by the help of quantum chemical calculations. Based on Hartree-Fock calculations (HF, 3-21G), following model of the transition state was devised. The anion of oxazolone approaches imine in synclinal arrangement due to steric interactions in the transition state. The oxazolone attacks imine from re-face via its re-face. The catalyst and benzoic acid helps in activating the imine through oxygen atoms.

Transition state was optimized at AM1 level in Spartan and finally it was refined at HF level using 3-21G base. The transition state was confirmed by one negative vibration corresponding to formation of C-C bond (verified by visualisation).

\[E = -4600.3450078 \text{ au} \]

\[i = -190 \text{ cm}^{-1} \]
<table>
<thead>
<tr>
<th>Index</th>
<th>x-coordinates</th>
<th>y-coordinates</th>
<th>z-coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5.84492292321843</td>
<td>-3.6358308166448</td>
<td>4.01755776071658</td>
</tr>
<tr>
<td>2</td>
<td>-4.31613448987613</td>
<td>2.16184669720591</td>
<td>1.60626721383306</td>
</tr>
<tr>
<td>3</td>
<td>-5.22887221256010</td>
<td>-0.12472198438800</td>
<td>0.37416577451641</td>
</tr>
<tr>
<td>4</td>
<td>-7.56079426181892</td>
<td>1.12816550195098</td>
<td>0.59904184453040</td>
</tr>
<tr>
<td>5</td>
<td>-12.04700410374790</td>
<td>3.89661528814562</td>
<td>0.73321373996145</td>
</tr>
<tr>
<td>6</td>
<td>-9.83791425319403</td>
<td>0.05858151015156</td>
<td>1.11493841901353</td>
</tr>
<tr>
<td>7</td>
<td>-7.56268398795284</td>
<td>3.71142212702133</td>
<td>0.19464179860706</td>
</tr>
<tr>
<td>8</td>
<td>-9.78500192144424</td>
<td>5.06257631277503</td>
<td>0.14964179860706</td>
</tr>
<tr>
<td>9</td>
<td>-13.77610351628590</td>
<td>4.63171875424098</td>
<td>-0.32881234730230</td>
</tr>
<tr>
<td>10</td>
<td>-9.90027521561343</td>
<td>-2.04468367690279</td>
<td>1.43619186178015</td>
</tr>
<tr>
<td>11</td>
<td>-9.82246218611384</td>
<td>0.13228082937475</td>
<td>4.37849545229554</td>
</tr>
<tr>
<td>12</td>
<td>-14.44128711542620</td>
<td>0.05102260561587</td>
<td>1.85949051577581</td>
</tr>
<tr>
<td>13</td>
<td>-9.73775876809621</td>
<td>7.83291482510358</td>
<td>-0.24188494514192</td>
</tr>
<tr>
<td>14</td>
<td>-14.45640492449750</td>
<td>-2.37916520260685</td>
<td>1.08470820087079</td>
</tr>
<tr>
<td>15</td>
<td>-16.44628654351666</td>
<td>1.23399116545057</td>
<td>0.8050333305045</td>
</tr>
<tr>
<td>16</td>
<td>-14.87403494000940</td>
<td>0.01322808293747</td>
<td>-4.19052746437038</td>
</tr>
<tr>
<td>17</td>
<td>-11.95629724931970</td>
<td>8.67006350243070</td>
<td>-0.38361440158601</td>
</tr>
<tr>
<td>18</td>
<td>-7.88015797845162</td>
<td>8.51321632331523</td>
<td>-1.8519316124282</td>
</tr>
<tr>
<td>19</td>
<td>-9.34469573224059</td>
<td>9.16706147565199</td>
<td>1.91618229979614</td>
</tr>
<tr>
<td>20</td>
<td>-1.99717345152999</td>
<td>-2.81758166567658</td>
<td>0.79179525011300</td>
</tr>
<tr>
<td>21</td>
<td>-0.58392537537816</td>
<td>-5.00588452875739</td>
<td>1.7102015119873</td>
</tr>
<tr>
<td>22</td>
<td>0.62738907646186</td>
<td>9.80648338705100</td>
<td>1.85949051577581</td>
</tr>
<tr>
<td>23</td>
<td>1.15273294169196</td>
<td>6.38916405878775</td>
<td>-2.4528645182978</td>
</tr>
<tr>
<td>24</td>
<td>1.54957542981542</td>
<td>-8.2087032575391</td>
<td>-4.35203928642064</td>
</tr>
<tr>
<td>25</td>
<td>1.96153572701025</td>
<td>-4.54857080434845</td>
<td>-2.66829330109680</td>
</tr>
<tr>
<td>26</td>
<td>2.09506282518666</td>
<td>-7.4031824454144</td>
<td>-5.9734230932507</td>
</tr>
<tr>
<td>27</td>
<td>0.26267193261505</td>
<td>-9.68064833870510</td>
<td>2.63049877814138</td>
</tr>
<tr>
<td>28</td>
<td>0.47999043801600</td>
<td>-2.16373642333983</td>
<td>6.59325448125124</td>
</tr>
<tr>
<td>29</td>
<td>3.73598856667231</td>
<td>-5.61059689161219</td>
<td>6.92206682553534</td>
</tr>
<tr>
<td>30</td>
<td>1.22076308251312</td>
<td>-6.41849067130353</td>
<td>7.99921072488685</td>
</tr>
<tr>
<td>31</td>
<td>3.29946182982650</td>
<td>-4.5224106808206</td>
<td>4.17814844209988</td>
</tr>
<tr>
<td>32</td>
<td>2.11649326999180</td>
<td>-1.93696928726928</td>
<td>4.26700161093491</td>
</tr>
<tr>
<td>33</td>
<td>-0.24755412354368</td>
<td>-6.20633664107487</td>
<td>7.76866413655026</td>
</tr>
<tr>
<td>34</td>
<td>2.05980148579416</td>
<td>-8.0993620998648</td>
<td>4.1687358143028</td>
</tr>
<tr>
<td>35</td>
<td>0.84092812959946</td>
<td>-0.49510824708737</td>
<td>7.71386207866654</td>
</tr>
<tr>
<td>36</td>
<td>4.42195915337572</td>
<td>-7.17340040436507</td>
<td>8.04645387823669</td>
</tr>
<tr>
<td>37</td>
<td>1.40784596771733</td>
<td>-4.23676599225144</td>
<td>10.00043070071120</td>
</tr>
<tr>
<td>38</td>
<td>5.05501740823934</td>
<td>-7.05812711019587</td>
<td>3.31457963898787</td>
</tr>
<tr>
<td>39</td>
<td>-0.82958772779143</td>
<td>11.12857920266220</td>
<td>-2.21099756687876</td>
</tr>
<tr>
<td>40</td>
<td>-3.97598378577031</td>
<td>12.60069360986960</td>
<td>1.75177612614500</td>
</tr>
<tr>
<td>41</td>
<td>-1.84059325443929</td>
<td>13.60791789036690</td>
<td>2.11460354385787</td>
</tr>
<tr>
<td>42</td>
<td>-1.37950077762521</td>
<td>-9.42784368213312</td>
<td>-0.24188494514192</td>
</tr>
<tr>
<td>43</td>
<td>-3.01033733136365</td>
<td>-10.2279738678180</td>
<td>1.74043776934147</td>
</tr>
<tr>
<td>44</td>
<td>-3.35426388771022</td>
<td>-14.33168299965870</td>
<td>-0.1963511792781</td>
</tr>
<tr>
<td>45</td>
<td>-1.36249254255722</td>
<td>-14.8570268468888</td>
<td>-3.63016390326272</td>
</tr>
<tr>
<td>46</td>
<td>-3.56780294084332</td>
<td>-8.91005872143870</td>
<td>3.15962209519633</td>
</tr>
<tr>
<td>47</td>
<td>-4.15172831622499</td>
<td>-16.18550433703550</td>
<td>-0.09259658056214</td>
</tr>
<tr>
<td>48</td>
<td>-5.58980990413906</td>
<td>-13.5266596660830</td>
<td>3.54134677496842</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>105</td>
<td>o</td>
<td>-1.34926445961977</td>
<td>3.14639401297888</td>
</tr>
<tr>
<td>106</td>
<td>o</td>
<td>1.03745964752276</td>
<td>2.89128098489951</td>
</tr>
<tr>
<td>107</td>
<td>c</td>
<td>-0.86549456933593</td>
<td>7.1469423849017</td>
</tr>
<tr>
<td>108</td>
<td>c</td>
<td>-3.56591321470940</td>
<td>11.37804105233980</td>
</tr>
<tr>
<td>109</td>
<td>c</td>
<td>-1.35682336415545</td>
<td>9.07068544282200</td>
</tr>
<tr>
<td>110</td>
<td>c</td>
<td>-1.66862817625246</td>
<td>7.35292438708759</td>
</tr>
<tr>
<td>111</td>
<td>c</td>
<td>-3.00277482680086</td>
<td>9.46752793094547</td>
</tr>
<tr>
<td>112</td>
<td>c</td>
<td>-2.69852891923954</td>
<td>11.1645019920670</td>
</tr>
<tr>
<td>113</td>
<td>c</td>
<td>-5.21564412962265</td>
<td>13.58146172449200</td>
</tr>
<tr>
<td>114</td>
<td>h</td>
<td>-0.71053702635439</td>
<td>8.90816899530478</td>
</tr>
<tr>
<td>115</td>
<td>h</td>
<td>-3.10859949030045</td>
<td>12.6309247912960</td>
</tr>
<tr>
<td>116</td>
<td>h</td>
<td>-1.27367541426292</td>
<td>5.85815101515588</td>
</tr>
<tr>
<td>117</td>
<td>h</td>
<td>-3.64528171233409</td>
<td>9.6092539098956</td>
</tr>
<tr>
<td>118</td>
<td>h</td>
<td>-7.16962095209723</td>
<td>13.07879457268890</td>
</tr>
<tr>
<td>119</td>
<td>h</td>
<td>-4.76210985748155</td>
<td>15.26331798368190</td>
</tr>
<tr>
<td>120</td>
<td>h</td>
<td>-5.00966398102523</td>
<td>14.00287065235640</td>
</tr>
<tr>
<td>121</td>
<td>c</td>
<td>-5.56524346439808</td>
<td>-0.26267193261505</td>
</tr>
<tr>
<td>122</td>
<td>h</td>
<td>7.51166138233697</td>
<td>0.6309247912960</td>
</tr>
<tr>
<td>123</td>
<td>h</td>
<td>-0.09637603282998</td>
<td>-9.0154300135605</td>
</tr>
<tr>
<td>124</td>
<td>h</td>
<td>4.64116738491059</td>
<td>-1.74043767934147</td>
</tr>
<tr>
<td>125</td>
<td>c</td>
<td>6.77277846397376</td>
<td>4.32747284667966</td>
</tr>
<tr>
<td>126</td>
<td>h</td>
<td>6.62915927779575</td>
<td>6.18129418405641</td>
</tr>
<tr>
<td>127</td>
<td>h</td>
<td>5.89216608556646</td>
<td>4.42951805791141</td>
</tr>
<tr>
<td>129</td>
<td>c</td>
<td>5.87510117845716</td>
<td>3.87960775294032</td>
</tr>
<tr>
<td>130</td>
<td>c</td>
<td>-2.49254877064213</td>
<td>-5.07391466957856</td>
</tr>
<tr>
<td>131</td>
<td>c</td>
<td>-2.21664887500896</td>
<td>-3.89094610947385</td>
</tr>
<tr>
<td>132</td>
<td>c</td>
<td>-1.48343501512818</td>
<td>-0.72943248769360</td>
</tr>
<tr>
<td>133</td>
<td>c</td>
<td>-1.72720968640402</td>
<td>-1.34737473348585</td>
</tr>
<tr>
<td>134</td>
<td>c</td>
<td>-2.33759122766058</td>
<td>-4.86037561644545</td>
</tr>
<tr>
<td>135</td>
<td>c</td>
<td>-1.97098435767986</td>
<td>-3.27678511621945</td>
</tr>
<tr>
<td>136</td>
<td>c</td>
<td>-1.36249254255722</td>
<td>0.24188949514192</td>
</tr>
<tr>
<td>137</td>
<td>c</td>
<td>-2.71364672831091</td>
<td>-6.82758052185748</td>
</tr>
<tr>
<td>138</td>
<td>h</td>
<td>-2.06547066437592</td>
<td>-4.02511666525226</td>
</tr>
<tr>
<td>139</td>
<td>h</td>
<td>-0.99399594644258</td>
<td>2.20153094601825</td>
</tr>
<tr>
<td>140</td>
<td>c</td>
<td>-1.20375554730783</td>
<td>0.48754934255168</td>
</tr>
<tr>
<td>141</td>
<td>c</td>
<td>-1.60815639966968</td>
<td>-0.38361440518601</td>
</tr>
<tr>
<td>142</td>
<td>c</td>
<td>-1.93885901340320</td>
<td>-1.70831242506481</td>
</tr>
<tr>
<td>143</td>
<td>c</td>
<td>-1.12060759741530</td>
<td>2.07491929504553</td>
</tr>
</tbody>
</table>

47