Supplementary Information

Thiacloprid suspension formula optimization by a response surface methodology

Bei-xing Li, Wei-chang Wang, Kai Wang, Da-xia Zhang, Lei Guan and Feng Liu*

Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai’an, P. R. China. Fax/Tel: 86 0538 8242611; E-mail: fliu@sdau.edu.cn

Figure S1. Measured values vs. predicted values for modeled centrifugal sedimentation ratio.

Figure S2. Measured values vs. predicted values for modeled viscosity.
Table S1. Proposed experiments by RSM and their corresponding output parameters.

<table>
<thead>
<tr>
<th>No.</th>
<th>Tersperse</th>
<th>AE1601</th>
<th>Xanthan gum</th>
<th>Veegum</th>
<th>Aqueous separation ratio/%</th>
<th>Centrifugal sedimentation ratio/%</th>
<th>Viscosity/mPa·s</th>
<th>Dispersibility</th>
<th>Susceptibility/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>16.83 ± 0.12 a</td>
<td>22.45 ± 0.37 a</td>
<td>176.60 ± 1.16 t</td>
<td>Excellent</td>
<td>94.78 ± 0.53</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>15.11 ± 0.14 b</td>
<td>19.93 ± 0.25 b</td>
<td>160.34 ± 0.10 u</td>
<td>Excellent</td>
<td>96.05 ± 0.23</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>10.47 ± 0.12 d</td>
<td>16.58 ± 0.09 e</td>
<td>189.62 ± 0.08 r</td>
<td>Excellent</td>
<td>95.70 ± 0.89</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>8.82 ± 0.14 e</td>
<td>14.43 ± 0.39 g</td>
<td>209.22 ± 0.20 p</td>
<td>Excellent</td>
<td>96.34 ± 0.53</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>7.67 ± 0.07 f</td>
<td>16.45 ± 0.11 e</td>
<td>241.76 ± 0.39 k</td>
<td>Fine</td>
<td>95.45 ± 0.19</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>4.70 ± 0.07 h</td>
<td>11.14 ± 0.33 jk</td>
<td>240.16 ± 0.19 i</td>
<td>Excellent</td>
<td>95.97 ± 0.42</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.35 ± 0.11 g</td>
<td>11.99 ± 0.09 hi</td>
<td>243.64 ± 0.81 k</td>
<td>Fine</td>
<td>93.68 ± 0.42</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>4.67 ± 0.10 h</td>
<td>7.28 ± 0.19 o</td>
<td>281.92 ± 0.11 f</td>
<td>Fine</td>
<td>95.17 ± 0.45</td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>9.98 ± 0.05 d</td>
<td>18.60 ± 0.07 c</td>
<td>212.90 ± 0.13 o</td>
<td>Fine</td>
<td>93.30 ± 0.48</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>6.60 ± 0.08 g</td>
<td>15.64 ± 0.32 f</td>
<td>174.02 ± 0.60 t</td>
<td>Excellent</td>
<td>95.22 ± 0.85</td>
</tr>
<tr>
<td>11</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>4.55 ± 0.12 h</td>
<td>12.46 ± 0.31 h</td>
<td>252.14 ± 0.14 j</td>
<td>Fine</td>
<td>96.06 ± 0.25</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1.50 ± 0.11 i</td>
<td>10.04 ± 0.51 i</td>
<td>260.92 ± 0.59 h</td>
<td>Excellent</td>
<td>95.49 ± 0.61</td>
</tr>
<tr>
<td>13</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>4.88 ± 0.12 hi</td>
<td>10.57 ± 0.24 kl</td>
<td>268.86 ± 0.28 g</td>
<td>Fine</td>
<td>93.19 ± 0.27</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1.81 ± 0.10 n</td>
<td>5.70 ± 0.28 p</td>
<td>283.66 ± 0.83 ef</td>
<td>Fine</td>
<td>94.10 ± 0.37</td>
</tr>
<tr>
<td>15</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.92 ± 0.10 ij</td>
<td>6.91 ± 0.19 o</td>
<td>330.22 ± 0.87 c</td>
<td>Fine</td>
<td>95.43 ± 0.46</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.22 ± 0.03 o</td>
<td>2.31 ± 0.15 q</td>
<td>345.78 ± 0.08 a</td>
<td>Fine</td>
<td>94.80 ± 0.32</td>
</tr>
<tr>
<td>17</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.90 ± 0.10 g</td>
<td>15.36 ± 0.21 f</td>
<td>219.58 ± 0.62 n</td>
<td>Fine</td>
<td>93.29 ± 0.53</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.74 ± 0.07 m</td>
<td>8.17 ± 0.24 n</td>
<td>225.38 ± 0.08 m</td>
<td>Excellent</td>
<td>96.05 ± 0.40</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>8.91 ± 0.06 e</td>
<td>17.34 ± 0.35 d</td>
<td>208.64 ± 0.14 p</td>
<td>Excellent</td>
<td>93.12 ± 0.75</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3.04 ± 0.13 lm</td>
<td>7.36 ± 0.14 o</td>
<td>286.08 ± 0.11 e</td>
<td>Excellent</td>
<td>94.94 ± 0.25</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>11.42 ± 0.17 c</td>
<td>20.47 ± 0.25 b</td>
<td>185.76 ± 0.10 s</td>
<td>Excellent</td>
<td>94.77 ± 0.35</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1.77 ± 0.08 no</td>
<td>5.60 ± 0.26 p</td>
<td>336.46 ± 1.01 b</td>
<td>Fine</td>
<td>93.55 ± 0.42</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>14.83 ± 0.13 b</td>
<td>19.02 ± 0.19 c</td>
<td>197.68 ± 0.08 q</td>
<td>Excellent</td>
<td>92.84 ± 0.16</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3.64 ± 0.08 tk</td>
<td>9.30 ± 0.29 m</td>
<td>296.94 ± 0.48 d</td>
<td>Fine</td>
<td>97.02 ± 0.21</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.50 ± 0.08 jk</td>
<td>11.64 ± 0.16 ij</td>
<td>255.10 ± 0.49 i</td>
<td>Fine</td>
<td>94.21 ± 0.41</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.40 ± 0.08 jk</td>
<td>11.80 ± 0.17 hij</td>
<td>256.66 ± 0.48 i</td>
<td>Fine</td>
<td>94.96 ± 0.20</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.14 ± 0.09 km</td>
<td>11.43 ± 0.11 ij</td>
<td>250.88 ± 0.08 j</td>
<td>Fine</td>
<td>94.52 ± 0.34</td>
</tr>
</tbody>
</table>

*The levels of adjuvants were coded value. Each data of dependent variable is the mean ± SE. Data of the same index with different lowercase letters are significantly different at p < 0.05 level by Tukey test.
Table S2. The ANOVA for the aqueous separation ratio

<table>
<thead>
<tr>
<th>Source</th>
<th>Coefficient</th>
<th>F-value</th>
<th>Sequential p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>-</td>
<td>248.39</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>-</td>
<td>4.51</td>
<td>0.1951</td>
</tr>
<tr>
<td>Intercept</td>
<td>3.35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X_1</td>
<td>-1.17</td>
<td>231.62</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_2</td>
<td>-1.56</td>
<td>409.53</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_3</td>
<td>-2.43</td>
<td>995.17</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_4</td>
<td>-2.62</td>
<td>1158.72</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_1X_2</td>
<td>0.10</td>
<td>1.20</td>
<td>0.2941</td>
</tr>
<tr>
<td>X_1X_3</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.9037</td>
</tr>
<tr>
<td>X_1X_4</td>
<td>-0.24</td>
<td>6.21</td>
<td>0.0284*</td>
</tr>
<tr>
<td>X_2X_3</td>
<td>1.29</td>
<td>187.43</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_2X_4</td>
<td>0.14</td>
<td>2.36</td>
<td>0.1503</td>
</tr>
<tr>
<td>X_3X_4</td>
<td>1.04</td>
<td>121.54</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_1^2</td>
<td>0.39</td>
<td>22.89</td>
<td>0.0004*</td>
</tr>
<tr>
<td>X_2^2</td>
<td>0.68</td>
<td>69.05</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_3^2</td>
<td>0.83</td>
<td>104.28</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_4^2</td>
<td>1.49</td>
<td>334.59</td>
<td>< 0.0001*</td>
</tr>
</tbody>
</table>

Note: * indicates significant impact.

Table S3. Fitness of centrifugal sedimentation ratio to different models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sequential p-value</th>
<th>Lack of fit p-value</th>
<th>Adjusted R2</th>
<th>Predicted R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>< 0.0001</td>
<td>0.0320</td>
<td>0.9645</td>
<td>0.9546</td>
</tr>
<tr>
<td>2FI</td>
<td>0.0429</td>
<td>0.0462</td>
<td>0.9765</td>
<td>0.9770</td>
</tr>
<tr>
<td>Quadratic polynomial</td>
<td>< 0.0001</td>
<td>0.4323</td>
<td>0.9980</td>
<td>0.9951</td>
</tr>
<tr>
<td>Cubic polynomial</td>
<td>0.6310</td>
<td>0.2804</td>
<td>0.9977</td>
<td>0.9638</td>
</tr>
</tbody>
</table>
Table S4. The ANOVA for the centrifugal sedimentation ratio

<table>
<thead>
<tr>
<th>Source</th>
<th>Coefficient</th>
<th>F-value</th>
<th>Sequential p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>-</td>
<td>940.72</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>-</td>
<td>1.67</td>
<td>0.4323</td>
</tr>
<tr>
<td>Intercept</td>
<td>11.62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X_1</td>
<td>-1.83</td>
<td>1511.99</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_2</td>
<td>-2.43</td>
<td>2677.50</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_3</td>
<td>-3.65</td>
<td>6005.32</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_4</td>
<td>-2.39</td>
<td>2590.99</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_1X_2</td>
<td>0.11</td>
<td>3.76</td>
<td>0.0763</td>
</tr>
<tr>
<td>X_1X_3</td>
<td>-0.59</td>
<td>104.50</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_1X_4</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.8540</td>
</tr>
<tr>
<td>X_2X_3</td>
<td>0.48</td>
<td>70.14</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_2X_4</td>
<td>0.06</td>
<td>0.94</td>
<td>0.3526</td>
</tr>
<tr>
<td>X_3X_4</td>
<td>-0.29</td>
<td>26.02</td>
<td>0.0003*</td>
</tr>
<tr>
<td>X_1^2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.9066</td>
</tr>
<tr>
<td>X_2^2</td>
<td>0.15</td>
<td>9.34</td>
<td>0.0100*</td>
</tr>
<tr>
<td>X_3^2</td>
<td>0.32</td>
<td>42.11</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_4^2</td>
<td>0.60</td>
<td>146.85</td>
<td>< 0.0001*</td>
</tr>
</tbody>
</table>

Note: * indicates significant impact.

Table S5. Fitness of the viscosity to different models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sequential p-value</th>
<th>Lack of fit p-value</th>
<th>Adjusted R^2</th>
<th>Predicted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>< 0.0001</td>
<td>0.0319</td>
<td>0.8988</td>
<td>0.8675</td>
</tr>
<tr>
<td>2FI</td>
<td>0.0208</td>
<td>0.0513</td>
<td>0.9399</td>
<td>0.9144</td>
</tr>
<tr>
<td>Quadratic polynomial</td>
<td>0.0004</td>
<td>0.1696</td>
<td>0.9836</td>
<td>0.9572</td>
</tr>
<tr>
<td>Cubic polynomial</td>
<td>0.7274</td>
<td>0.0831</td>
<td>0.9783</td>
<td>0.5590</td>
</tr>
</tbody>
</table>
Table S6. The ANOVA for the viscosity

<table>
<thead>
<tr>
<th>Source</th>
<th>Coefficient</th>
<th>F-value</th>
<th>Sequential p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>-</td>
<td>112.04</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>-</td>
<td>5.28</td>
<td>0.1696</td>
</tr>
<tr>
<td>Intercept</td>
<td>254.21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X_1</td>
<td>2.16</td>
<td>2.74</td>
<td>0.1235</td>
</tr>
<tr>
<td>X_2</td>
<td>21.25</td>
<td>265.43</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_3</td>
<td>37.57</td>
<td>829.37</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_4</td>
<td>24.32</td>
<td>347.70</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_1X_2</td>
<td>7.76</td>
<td>23.58</td>
<td>0.0004*</td>
</tr>
<tr>
<td>X_1X_3</td>
<td>5.86</td>
<td>13.47</td>
<td>0.0032*</td>
</tr>
<tr>
<td>X_1X_4</td>
<td>-2.49</td>
<td>2.42</td>
<td>0.1456</td>
</tr>
<tr>
<td>X_2X_3</td>
<td>-1.31</td>
<td>0.67</td>
<td>0.4287</td>
</tr>
<tr>
<td>X_2X_4</td>
<td>9.01</td>
<td>31.78</td>
<td>0.0001*</td>
</tr>
<tr>
<td>X_3X_4</td>
<td>3.55</td>
<td>4.94</td>
<td>0.0462*</td>
</tr>
<tr>
<td>X_1^2</td>
<td>-8.36</td>
<td>36.53</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>X_2^2</td>
<td>-2.14</td>
<td>2.40</td>
<td>0.1474</td>
</tr>
<tr>
<td>X_3^2</td>
<td>1.29</td>
<td>0.88</td>
<td>0.3680</td>
</tr>
<tr>
<td>X_4^2</td>
<td>-2.16</td>
<td>2.43</td>
<td>0.1452</td>
</tr>
</tbody>
</table>

Note: * indicates significant impact.

Table S7. Constraints for the multiple-response optimization.

<table>
<thead>
<tr>
<th>Name</th>
<th>Goal</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Lower weight</th>
<th>Upper weight</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1: Tersperse2700</td>
<td>Range</td>
<td>-2.00</td>
<td>2.00</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>X_2: AE1601</td>
<td>Range</td>
<td>-2.00</td>
<td>2.00</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>X_3: Xanthan gum</td>
<td>Range</td>
<td>-2.00</td>
<td>2.00</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>X_4: Veegum</td>
<td>Range</td>
<td>-2.00</td>
<td>2.00</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Aqueous separation ratio/%</td>
<td>Minimize</td>
<td>1.22</td>
<td>5.00</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Centrifugal sedimentation ratio/%</td>
<td>Minimize</td>
<td>2.31</td>
<td>5.00</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Viscosity/ mPa·s</td>
<td>Minimize</td>
<td>160.34</td>
<td>345.78</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>