Supporting Information

Structure-induced catalytic activity of Co-Zn double-metal cyanide complexes for terpolymerization of propylene oxide, cyclohexene oxide and CO₂

Joby Sebastian†‡, Darbha Srinivas†‡,*

† Catalysis Division, CSIR-National Chemical Laboratory, Pune-411 008, India.
‡ Academy of Scientific and Innovative Research (AcSIR), New Delhi- 110001, India.
E-mail: d.srinivas@ncl.res.in, Tel: +91 20 2590 2018, Fax: +91 20 2590 2633.

S1. ¹H NMR spectrum of PCHC.
S2. ¹H NMR spectrum of PPC.
S3. ¹H NMR spectra of all polycarbonates.
S4. ¹³C inverse gated NMR of the copolymers and terpolymer in the CH and CH₂ regions of PPC.
S5. ¹³C inverse gated NMR of the copolymers and terpolymer in the CH₃ region.
S6. Thermograms of PPC, PCHC and terpolymer.
S7. FTIR of Co-Zn DMC catalysts.
S8. DRIFT spectrum of adsorbed pyridine on DMC-II showing bands due to Lewis acid sites.
S9. NH₃-TPD of DMC-II.
S10 Powder XRD of PCHC and terpolymer produced using DMC-II catalyst.
S11 SEM images of PCHC and terpolymer produced over DMC-II.
S12. ¹H NMR spectrum of crude terpolymer synthesised over DMC-II.
S13. Reaction time verses reactor pressure at different reaction conditions.
S14. PXRD patterns of fresh and spent DMC-II catalyst.
S1. 1H NMR spectrum of purified PCHC.
S2. 1H NMR spectrum of purified PPC.
S3. 1H NMR spectra of PPC, PCHC, PPC + PCHC physical blend and PO-CHO-CO$_2$ terpolymer.
S4. Inverse-gated 13C NMR of the polycarbonates in the CH (72.07 and 72.30 ppm) and CH$_2$ (68.93 ppm) regions of PPC. The terpolymer spectrum appeared as broad peaks without considerable splits as in the blend and PPC. It also clear that there is a change in tacticity pattern for the terpolymer as compared to PPC (reversal of intensity distribution of 72.30 ppm in terpolymer as compared to PPC).
S5. 13C inverse gated NMR of the polycarbonates in the CH$_3$ region (16.17 and 16.63 ppm) of PPC and CH$_2$ region (22.8 and 29.64 ppm) of PCHC. No major difference was observed in the CH$_3$ region of terpolymer as compared to PPC, but the peaks appeared as merged in case of CH$_2$ regions of terpolymer as compared to PCHC.
S6. Thermograms of PPC, PCHC and terpolymer synthesized over DMC-II.
S7. FTIR of (a) DMC-I and (b) DMC-II catalysts. Band assignments are given below.

<table>
<thead>
<tr>
<th>Band position (cm⁻¹)</th>
<th>Band assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3590</td>
<td>-OH stretch</td>
</tr>
<tr>
<td>2955</td>
<td>-C-H stretch</td>
</tr>
<tr>
<td>2191</td>
<td>-CN stretch</td>
</tr>
<tr>
<td>1614</td>
<td>-OH bending (H₂O)</td>
</tr>
<tr>
<td>1465</td>
<td>-CH scissoring</td>
</tr>
<tr>
<td>1370</td>
<td>-OH bending (tert-butanol)</td>
</tr>
<tr>
<td>1190</td>
<td>3⁰-C-O stretch</td>
</tr>
<tr>
<td>475</td>
<td>Co-CN stretch</td>
</tr>
</tbody>
</table>
S8. DRIFT spectra of adsorbed pyridine on DMC-II showing bands due to Lewis acid sites.
S9. NH$_3$-TPD of DMC-II.
S10. PXRD of PCHC and terpolymer produced using DMC-II catalyst.
S11. SEM images of PCHC and PO-CHO-CO$_2$ terpolymer produced over DMC-II.
S12. 1H NMR spectrum of crude terpolymer synthesised over DMC-II. The assigned peaks correspond to cyclic propylene carbonate (PC).
S13. Reaction time verses reactor pressure at different reaction conditions using DMC-II as catalyst. (a) effect of temperature, (b) effect of CO$_2$ pressure, (c) effect of catalyst quantity and (d) effect of % PO in reactant epoxide mixture.
S14. PXRD patterns of fresh and spent DMC-II catalyst. Reaction conditions: CHO = 5.6 g, PO = 3.5 g, CHO : PO molar ratio = 1:1, catalyst = 0.226 g, toluene = 8.7 g, p_{CO_2} = 30 bar, reaction time = 11 h, reaction temperature = 85°C.