ESI

Selective Fluorescence Sensing of Salicylic Acids Using a Simple Pyrenesulfonamide Receptor

Ashwani Kumar a, Manik Kumer Ghosh b, Cheol-Ho Choi b and Hong-Seok Kim a*

aDepartment of Applied Chemistry, Kyungpook National University, Daegu 702-701,
bDepartment of Chemistry, and Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea

Corresponding author: Tel.:+82 53 9505588; fax: +82 53 9506594.
E-mail address: kimhs@knu.ac.kr

Table of Contents

1. 1H NMR of probe 2 in CDCl$_3$. 4-5
2. 13C NMR of probe 2 in CDCl$_3$. 6
3. HRMS of probe 2. 7-8
4. 1H NMR of probe 3 in DMSO-d$_6$. 9-11
5. 13C NMR of probe 3 in DMSO-d$_6$. 12
6. HRMS of probe 3. 13-14
7. 1H NMR of probe 4 in DMSO-d$_6$. 15-17
8. 13C NMR of probe 4 in DMSO-d$_6$. 18
9. HRMS of probe 4. 19-20
10. 1H NMR of probe 5 in CDCl$_3$. 21-22
11. 13C NMR of probe 5 in CDCl$_3$. 23
12. HRMS of probe 5.

13. Fig. SI 1: Fluorescence study of probe 2 (1 μM, EtOH) with different salicylic derivatives/similar moieties, λ_{ex} = 336 nm, slit width 3.3.

14. Fig. SI 2: Fluorescence titration of probe 2 (1 μM, EtOH) with 3,5-Dinitrosalicylic acid, λ_{ex} = 336 nm, slit width 3.3.

Fig. SI 3: Fluorescence spectral fitting of probe 2 (1 μM, EtOH) with [3,5-Dinitrosalicylic Acid] at 379 nm and association constant.

15. Fig. SI 4: Relative fluorescence intensity bar diagram of probe 3 (1 μM, EtOH) with different aromatic carboxylic acids, λ_{ex} = 336 nm.

16. Fig. SI 5: Relative fluorescence bar diagram of probe 4 (1 μM, EtOH) with different carboxylic acids, λ_{ex} = 336 nm.

17. Fig. SI 6: Relative fluorescence bar diagram of probe 5 (1 μM, EtOH) with different carboxylic acids, λ_{ex} = 336 nm.

18. Fig. SI 7: Partial 1H NMR spectra of aromatic region of 5-NSA and probe 3 on addition of 1 eq. of 5-NSA in DMSO-d₆.

Fig. SI 8: Partial 1H NMR spectra of aliphatic region of 5-NSA and probe 3 on addition of 1 eq. of 5-NSA in DMSO-d₆.

19. Fig. SI 9: Partial 1H NMR spectra of aromatic region of 5-ISA and probe 3 on addition of 1 eq. of 5-ISA, 2 eq. of 5-ISA in DMSO-d₆.

Fig. SI 10: Partial 1H NMR spectra of aliphatic region 5-ISA and probe 3 on addition of 1 eq. of 5-ISA, 2 eq. of 5-ISA in DMSO-d₆.
20. Fig. SI 11: Partial 1H NMR spectra of aromatic region of SA and probe 3 on addition of 1 eq. of SA, 2 eq. of SA in DMSO-d$_6$.
Fig. SI 12: Partial 1H NMR spectra of aliphatic aromatic region of SA and probe 3 on addition of 1 eq. of SA, 2 eq. of SA in DMSO-d$_6$.

21. Fig. SI 13: The lifetimes of samples (Compo 1 = probe 3 (black), Compo 2 = 1:1 complex with 3,5-dinitrobenzoic acid (red) and Compo 3 = 1:10 complex with 3,5-dinitrobenzoic acid (blue)) are almost similar.
Fig. SI 14: The lifetimes of samples (Compo 1 = probe 3 (black), Compo 2 = 1:1 complex with 3,5-dinitrosalicylic acid (red) and Compo 3 = 1:10 complex with 3,5-dinitrosalicylic acid (blue)) are slightly different.

22. Fig. SI 15: Partial 1H NMR spectra of aromatic region of 3,5-DNSA and probe 4 on addition of 1 eq. of 3,5-DNSA, 2 eq. of 3,5-DNSA in DMSO-d$_6$.
Fig. SI 16: Partial 1H NMR spectra of aliphatic region of 3,5-DNSA and probe 4 on addition of 1 eq. of 3,5-DNSA, 2 eq. of 3,5-DNSA in DMSO-d$_6$.

23. Fig. SI 17: Partial 1H NMR spectra of aromatic region of 3,5-DNSA and probe 5 on addition of 1 eq. of 3,5-DNSA in DMSO-d$_6$.
Fig. SI 18: Partial 1H NMR spectra of aliphatic region of 3,5-DNSA and probe 5 on addition of 1 eq. of 3,5-DNSA in DMSO-d$_6$.

24. SI Table 1: The contributions of each electronic oscillator (orbital transitions) to the lowest energy transition.
Fig. SI 19: B3LYP/6-31G* calculated molecular orbitals of 5-NSA, 3,5-DNSA and probe 3.

25. Fig. SI 20: B3LYP/6-31G* calculated molecular orbitals of probe 3 + 5-NSA
and probe 3 + 3,5-DNSA.

26. Fig. SI 21: Fluorescence emission spectra of probe 3 and its complexes with 3,5-DNSA and 5-NSA, obtained by using B3LYP/6-31G*.

Fig. SI 22: Fluorescence intensity at λ_{max} of probe 3 and [3•3,5-DNSA] (1 µM, EtOH-H$_2$O 10%) vs pH, $\lambda_{ex} = 336$ nm, slit width 3,3.

1H NMR of probe 2 CDCl$_3$.
1H NMR of probe 2 aliphatic region in CDCl$_3$

1H NMR of probe 2 aromatic region in CDCl$_3$
13C NMR of probe 2 in CDCl₃
HRMS of probe 2
1H NMR of probe 3 in DMSO-d$_6$.
1H NMR of probe 3 aliphatic region in DMSO-d$_6$.
1H NMR of probe 3 aromatic region in DMSO-d$_6$
13C NMR of probe 3 in DMSO-d_6.
HRMS of probe 3
\[\text{H NMR of probe 4 in DMSO-d}_6. \]
1H NMR of probe 4 aliphatic region in DMSO-d$_6$.
1H NMR of probe 4 aromatic region in DMSO-d$_6$
13C NMR of probe 4 in DMSO-d$_6$.
1H NMR of probe 5 in CDCl$_3$.
1H NMR of probe 5 aliphatic region in CDCl₃.

1H NMR of probe 5 aromatic region in CDCl₃.
13C NMR of probe 5 in CDCl$_3$.
Fig. SI 1: Fluorescence study of probe 2 (1 µM, EtOH) with different salicylic derivatives/similar moieties, $\lambda_{ex} = 336$ nm, slit width 3.3.

Fig. SI 2: Fluorescence titration of probe 2 (1 µM, EtOH) with 3,5-Dinitrosalicylic acid, $\lambda_{ex} = 336$ nm.
Fig. SI 3: Fluorescence spectral fitting of probe 2 (1 µM, EtOH) with [3,5-Dinitrosalicylic Acid] and association constant.

Fig. SI 4: Relative fluorescence intensity bar diagram of probe 3 (1 µM, EtOH) with different aromatic carboxylic acids, $\lambda_{ex} = 336$ nm.
Fig. SI 5: Relative fluorescence intensity bar diagram of probe 4 (1 µM, EtOH) with different carboxylic acids, $\lambda_{\text{ex}} = 336$ nm, slit width 3.3.

Fig. SI 6: Relative fluorescence intensity bar diagram of probe 5 (1 µM, EtOH) with different carboxylic acids, $\lambda_{\text{ex}} = 336$ nm, slit width 3.3.
Fig. SI 7: Partial 1H NMR spectra of aromatic region of 5-NSA and probe 3 on addition of 1 eq. of 5-NSA in DMSO-d$_6$.

Fig. SI 8: Partial 1H NMR spectra of aliphatic region of 5-NSA and probe 3 on addition of 1 eq. of 5-NSA in DMSO-d$_6$.
Fig. SI 9: Partial 1H NMR spectra of aromatic region of 5-ISA and probe 3 on addition of 1 eq. of 5-ISA, 2 eq. of 5-ISA in DMSO-d$_6$.

Fig. SI 10: Partial 1H NMR spectra of aliphatic region 5-ISA and probe 3 on addition of 1 eq. of 5-ISA, 2 eq. of 5-ISA in DMSO-d$_6$.
Fig. SI 11: Partial 1H NMR spectra of aromatic region of SA and probe 3 on addition of 1 eq. of SA, 2 eq. of SA in DMSO-d$_6$.

Fig. SI 12: Partial 1H NMR spectra of aliphatic aromatic region of SA and probe 3 on addition of 1 eq. of SA, 2 eq. of SA in DMSO-d$_6$.
Fig. SI 13: The lifetimes of samples (Compo 1 = probe 3 (black), Compo 2 = 1:1 complex with 3,5-dinitrobenzoic acid (red) and Compo 3 = 1:10 complex with 3,5-dinitrobenzoic acid (blue)) are almost similar.

Fig. SI 14: The lifetimes of samples (Compo 1 = probe 3 (black), Compo 2 = 1:1 complex with 3,5-dinitrosalicylic acid (red) and Compo 3 = 1:10 complex with 3,5-dinitrosalicylic acid (blue)) are slightly different.
Fig. SI 15: Partial 1H NMR spectra of aromatic region of 3,5-DNSA and probe 4 on addition of 1 eq. of 3,5-DNSA, 2 eq. of 3,5-DNSA in DMSO-$_d_6$.

Fig. SI 16: Partial 1H NMR spectra of aliphatic region of 3,5-DNSA and probe 4 on addition of 1 eq. of 3,5-DNSA, 2 eq. of 3,5-DNSA in DMSO-$_d_6$.
Fig. SI 17: Partial 1H NMR spectra of aromatic region of 3,5-DNSA and probe 5 on addition of 1 eq. of 3,5-DNSA in DMSO-d_6.

Fig. SI 18: Partial 1H NMR spectra of aliphatic region of 3,5-DNSA and probe 5 on addition of 1 eq. of 3,5-DNSA in DMSO-d_6.
SI Table 1: The contributions of each electronic oscillator (orbital transitions) to the lowest energy transition.

<table>
<thead>
<tr>
<th>Molecule/Complex</th>
<th>State</th>
<th>Absorption</th>
<th>Coefficient</th>
<th>$-\Delta E_{\text{HOMO/LUMO}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-NSA</td>
<td>S_4</td>
<td>H \rightarrow L</td>
<td>0.95</td>
<td>4.391</td>
</tr>
<tr>
<td>3,5-DNSA</td>
<td>S_6</td>
<td>H \rightarrow L + 1</td>
<td>0.89</td>
<td>4.480</td>
</tr>
<tr>
<td>Probe 3</td>
<td>S_1</td>
<td>H \rightarrow L</td>
<td>0.95</td>
<td>3.537</td>
</tr>
<tr>
<td>Probe 3 + 5-NSA</td>
<td>S_2</td>
<td>H \rightarrow L</td>
<td>0.91</td>
<td>3.530</td>
</tr>
<tr>
<td>Probe 3 + 3,5-DNSA</td>
<td>S_7</td>
<td>H \rightarrow L + 2</td>
<td>0.95</td>
<td>3.518</td>
</tr>
</tbody>
</table>

Fig. SI 19: B3LYP/6-31G* calculated molecular orbitals of 5-NSA, 3,5-DNSA and probe 3.
Fig. SI 20: B3LYP/6-31G* calculated molecular orbitals of probe 3 + 5-NSA and probe 3 + 3,5-DNSA.
Fig. SI 21: Fluorescence emission spectra of probe 3 and its complexes with 3,5-DNSA and 5-NSA, obtained by using B3LYP/6-31G*.

Fig. SI 22: Fluorescence intensity at $\lambda_{\text{max}} = 379$ nm of probe 3 and [3•3,5-DNSA] (1 µM, EtOH-H$_2$O 10%) vs pH, $\lambda_{\text{ex}} = 336$ nm, slit width 3,3.