Optically-transparent and electrically-conductive
AgI-AgPO₃-WO₃ glass fibers

Maxime Rioux,*ᵃᵇ Yannick Ledemi,ᵇ Jeff Viens,ᵇ Steeve Morency,ᵇ Seyed Alireza Ghaffari,ᵇ Younès Messaddeq,b

ᵃ Department of chemistry, Laval University, Quebec, Canada
ᵇ Centre d’Optique, Photonique et Laser, Université Laval, 2375 rue la Terrasse, local 2131, Québec (Qc), G1V 0A6, Canada

*To whom the correspondence should be addressed. Email :

maxime.rioux.2@ulaval.ca
Figure S1. XRD pattern of the 45AgI-55AgPO₃ glass

Figure S2. XRD pattern of the 45AgI-50AgPO₃-5WO₃ glass
Figure S3. XRD pattern of the 45AgI-45AgPO$_3$-10WO$_3$ glass

Figure S4. XRD pattern of the 45AgI-35AgPO$_3$-20WO$_3$ glass
Figure S5. XRD pattern of the 45AgI-30AgPO$_3$-25WO$_3$ glass

Figure S6. DSC thermogram of the AgPO$_3$ glass
Figure S7. Nyquist complex impedance spectra of the 45AgI-50AgPO$_3$-5WO$_3$ glass at various temperatures. Applied voltage: 100 mV.

Figure S8. Nyquist complex impedance spectra of the 45AgI-45AgPO$_3$-10WO$_3$ glass at various temperatures. Applied voltage: 100 mV.
Figure S9. Nyquist complex impedance spectra of the 45AgI-40AgPO\textsubscript{3}-15WO\textsubscript{3} glass at various temperatures. Applied voltage: 100 mV.

Figure S10. Nyquist complex impedance spectra of the 45AgI-35AgPO\textsubscript{3}-20WO\textsubscript{3} at various temperatures. Applied voltage: 100 mV.
Figure S11. XPS spectrum for the 45AgI-40AgPO3-15WO3 bulk glass.

Figure S12. High resolution Ag XPS spectrum for the 45AgI-40AgPO3-15WO3 bulk glass.
Figure S13. XPS spectrum for the 45AgI-40AgPO_3-15WO_3 glass fiber of 250μm diameter (recorded on the surface along the fiber).

Figure S14. High resolution Ag XPS spectrum for the 45AgI-40AgPO_3-15WO_3 250μm fiber.
Figure S15. Ag-Auger $M_4N_{45}N_{45}$ spectra for the 45AgI-40AgPO$_3$-15WO$_3$ glass fiber of 250μm diameter (recorded on the surface along the fiber).

Figure S16. High resolution Ag spectrum for the metallic Ag standard.
Figure S17. Ag-Auger $M_4N_{45}N_{45}$ spectra for Ag standard.