Electronic Supporting Information

Exceptional thermal stability of undoped anatase TiO₂ photocatalysts prepared by a solvent-exchange method

Igor Krivtsov*a,b, Marina Ilkaeva*a,c, Viacheslav Avdinb,c, Zakariae Amghouzd, Sergei A. Khainakovd, José R. Garcia*a, Eva Díaze and Salvador Ordoñez*e

a Department of Organic and Inorganic Chemistry, University of Oviedo-CINN, 33006 Oviedo, Spain
b Nanotechnology Education and Research Center, South Ural State University, 454080, Chelyabinsk, Russia
c Department of Chemistry, South Ural State University, 454080 Chelyabinsk, Russia
d Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo, Spain
e Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain
Fig. S1. Powder XRD patterns of the as-prepared samples
Fig. S2 DR UV-vis spectra of the as-prepared TiAq, TiAc and TiEt samples
Fig. S3 TG/DTG/DTA curves of the (A) TiAq, (B) TiAc and (C) TiEt samples
Figure S4. EELS spectra of some selected TiEt and TiAq samples; the inset shows the magnification of the nitrogen K-edge.
Fig. S5. Histograms of particle-size distribution for the TiEt (a) and TiAq (b) samples thermally treated at 800 °C.
Fig. S6. Titanium L2,3 core-Loss and oxygen K core-Loss normalized EELS spectra from the TiEt (blue) and TiAq (red) samples treated at 800 ºC
Fig. S7. SEM-images of the TiAq (a), TiAc (b), TiEt (c) samples thermally treated at 800 °C and the TiEt treated at 1000 °C (d)
Fig. S8. Photocatalytic decomposition of MB in presence of the catalysts thermally treated at 500 °C
Fig. S9. N₂ Adsorption-desorption isotherm at 77 K for the sample TiAq calcined at 800 °C (BET surface area: 9 m²·g⁻¹; mesopores volume: 0.026 cm³·g⁻¹)
Fig. S10. N$_2$ Adsorption-desorption isotherm at 77 K for the sample TiEt calcined at 800 °C (BET surface area: 34 m2·g$^{-1}$; mesopores volume: 0.50 cm3·g$^{-1}$)
Fig. S11. Powder XRD patterns of Evonik P25 thermally treated at different temperatures