Electronic Supplementary Information

Synthesis, glycosylation and NMR characterization of linear peracetylated D-galactose glycopolymers

Marco Pocci,* Silvana Alfei, Francesco Lucchesini, Sara Castellaro, Vincenzo Bertini

Dipartimento di Farmacia, Università di Genova
Via Brigata Salerno, 13 I-16147 Genova, Italy

List of contents

Table S1. Homopolymerization data of 4 p.2
Table S2. Glycosylation data of model molecule 5. p.2
Chart S1. Molecular formulas with numbering of the carbons of 4αβp, 4αβf, 5αβp, 5αβf, 7βf, 9βp, and 10αβp for NMR assignments. p.3
Characterization data of compounds 7αβf, 8, 9βp, and 10αβp. p.3
Figure S1. 1H NMR spectrum of 4αp in CDCl3. p.6
Figure S2. 13C NMR spectrum of 4αp in CDCl3. p.7
Figure S3. 1H NMR spectrum of 4βp as enriched monomer in CDCl3. p.8
Figure S4. 13C NMR spectrum of 4βp as enriched monomer in CDCl3. p.9
Figure S5. 1H NMR spectrum of 5αp in CDCl3. p.10
Figure S6. 13C NMR spectrum of 5αp in CDCl3. p.11
Figure S7. 1H NMR spectrum of 5βp in CDCl3. p.12
Figure S8. 13C NMR spectrum of 5βp in CDCl3. p.13
Figure S9. 1H NMR spectrum of 6αp in CDCl3. p.14
Figure S10. 13C NMR spectrum of 6αp in CDCl3. p.15
Figure S11. 1H NMR spectrum of 6βp in CDCl3. p.16
Figure S12. 13C NMR spectrum of 6βp in CDCl3. p.17
Figure S13. 1H NMR spectrum of 7αβf in CDCl3. p.18
Figure S14. 13C NMR spectrum of 7αβf in CDCl3. p.19
Figure S15. 1H NMR and 13C NMR spectra of 8 in CDCl3. p.20
Figure S16. 1H spectrum of 9βp in CDCl3. p.21
Figure S17. 13C NMR spectrum of 9βp in CDCl3. p.22
Figure S18. 1H NMR spectrum of 10αβp in DMSO-d6. p.23
Figure S19. 13C NMR spectrum of 10αβp in DMSO-d6. p.24
Figure S21. 1H NMR spectrum of 11 in CDCl$_3$.
Figure S22. 13C NMR spectrum of 11 in CDCl$_3$.
Figure S23. 1H and 13C NMR spectra of 12 in CDCl$_3$.

Table S1. Homopolymerization of 4 in DMF at 60 °C.

<table>
<thead>
<tr>
<th>Run</th>
<th>Monomer (mmol)</th>
<th>AIBN mg (%)</th>
<th>DMF mL</th>
<th>Time h</th>
<th>Polymer g (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4αp</td>
<td>0.188 (0.39)</td>
<td>2.0 (1.1)</td>
<td>48</td>
<td>P4αp 0.163 (87)</td>
</tr>
<tr>
<td>2</td>
<td>4βp</td>
<td>0.916 (1.92)</td>
<td>9.2 (1.0)</td>
<td>48</td>
<td>P4βp 0.839 (92)</td>
</tr>
<tr>
<td>3</td>
<td>4αβp</td>
<td>1.860 (3.90)</td>
<td>18.6 (1.0)</td>
<td>24</td>
<td>P4αβp 0.821 (44)</td>
</tr>
<tr>
<td>4</td>
<td>4αβp</td>
<td>2.18 (4.57)</td>
<td>21.8 (1.0)</td>
<td>50</td>
<td>P4αβp 1.99 (91)</td>
</tr>
<tr>
<td>5</td>
<td>4αβp</td>
<td>2.28 (4.76)</td>
<td>22.9 (1.0)</td>
<td>72</td>
<td>P4αβp 2.01 (88)</td>
</tr>
</tbody>
</table>

AIBN = azobisisobutironitrile; DMF = N,N-dimethylformamide; p = pyranose form; f = furanose form; * as enriched β-pyranose anomer.

Table S2. Typical glycosylation data of 5 with 2 in the presence of SnCl$_4$ or BF$_3$:Et$_2$O in CH$_2$Cl$_2$.

<table>
<thead>
<tr>
<th>Run</th>
<th>Substrate mg (mmol)</th>
<th>C μL (mmol)</th>
<th>2 mg (mmol)</th>
<th>5 : C : 2 Molar ratio</th>
<th>6αp mg (mmol)</th>
<th>6βp mg (mmol)</th>
<th>7αβf mg (mmol)</th>
<th>8 mg (mmol)</th>
<th>9βp mg (mmol)</th>
<th>10αβp mg (mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5αp</td>
<td>108.2 (0.240)</td>
<td>35 (0.299)</td>
<td>78.3 (0.269)</td>
<td>1:1.3:1.1</td>
<td>41.8 (0.061)</td>
<td>5.2 (0.008)</td>
<td>-</td>
<td>27.2 (0.082)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5βp</td>
<td>250.9 (0.556)</td>
<td>70 (0.598)</td>
<td>173.1 (0.594)</td>
<td>1:1.1:1</td>
<td>-</td>
<td>111.0 (0.163)</td>
<td>-</td>
<td>85.5 (0.257)</td>
<td>22.3</td>
</tr>
<tr>
<td>3</td>
<td>5αβf</td>
<td>116.2 (0.257)</td>
<td>35 (0.299)</td>
<td>84.0 (0.299)</td>
<td>1:1.2:1.2</td>
<td>-</td>
<td>-</td>
<td>84.4 (0.124)</td>
<td>7.1 (0.021)</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>5βp</td>
<td>200.3 (0.444)</td>
<td>60 (0.473)</td>
<td>142.6 (0.490)</td>
<td>1:1.1:1.1</td>
<td>-</td>
<td>100.9 (0.148)</td>
<td>-</td>
<td>71.7 (0.215)</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>5αβp</td>
<td>122.9 (0.272)</td>
<td>252 (2.042)</td>
<td>95.1 (0.327)</td>
<td>1:1.5:1.2</td>
<td>-</td>
<td>36.9 (0.054)</td>
<td>-</td>
<td>22.9 (0.069)</td>
<td>7.4</td>
</tr>
</tbody>
</table>

C = promoter; * yield percent with respect to 2; bβ/α = 1.3; cβ/α = 2.0; dβ/α = 2.2.
Characterization of compounds 7αβf, 8, 9βp, and 10αβp

7αβf. Oil. νmax/cm⁻¹ (neat) 1748 (ester), 1650 (amide).

7βf. δH (300 MHz; CDCl₃, Me₄Si) 1.72-1.89 (m, 4H, H-2”” + H-3””)*, 2.07 (s, 3H, CH₃)*, 2.10 (s, 3H, CH₃), 2.13 (s, 3H, CH₃), 3.49-3.91 (m, 4H, H-6 + H-1””)*, 3.97 (t, 2H, J = 6.1, H-4””)*, 4.25 (dd, 1H, J₁ = 5.7, J₂ = 3.2, H-4), 4.43 (d, 2H, J = 5.6, H-1””)*, 4.98-5.03 (m, 1H, H-3), 5.04-5.09 (m, 2H, H-1 + H-2), 5.33 (dt, 1H, J₁ = 7.1, J₂ = 3.4, H-5), 6.81-6.91 (m, 3H, H-2ᵢv + H-6ᵢv + CH₂NH)*, 7.14-7.22 (m, 2H, H-3ᵢv + H-5ᵢv), 7.25 (bs, 1H, CF₃CONH)*, 7.38-7.53 (m, 3H, H-3”” + H-4”” + H-5””)*, 7.70-7.76 (m, 2H, H-2”” + H-6””)*. *Overlapped with those from 7αf. δC (75.5 MHz, CDCl₃, Me₄Si) 20.68 (CH₃)**, 20.78 (CH₃)**, 20.91 (CH₃)**, 25.88 (C-2”” or C-3””)**, 25.94 (C-2”” or C-3””)**, 41.75 (C-6), 43.37 (C-1””)**, 67.34 (C-1””), 67.54 (C-4””)**, 70.62 (C-5), 76.89 (C-3), 81.33 (C-2), 81.61 (C-4), 105.59 (C-1), 114.87 (C-2ᵢv)**, 115.96 (q, CF₃CO, J_CF = 288)**, 126.89
(C-2'')**, 128.13 (C-4'''), 128.63 (C-3'')**, 129.45 (C-3''')**, 131.65 (C-4''')**, 134.07 (C-1''), 157.10 (q, CF₃CO, JCF = 37)**, 158.86 (C-1''''), 167.54 (CO, amide), 169.80 (CO, ester)**, 170.31 (CO, ester), 171.18 (CO, ester). **Overlapped with those of 7αf or not assignable to the proper anomer.

7αf. δH (300 MHz; CDCl₃, Me₄Si) 1.72-1.89 (m, 4H, H-2''' + H-3''''), 2.07 (s, 3H, CH₃)*, 2.09 (s, 3H, CH₃), 2.11 (s, 3H, CH₃), 3.35-3.45 (m, 1H, H-6), 3.49-3.91 (m, 3H, H-6 + H-1'''), 3.97 (t, 2H, J = 6.1, H-4''''), 4.08 (dd, 1H, J₁ = 6.5, J₂ = 5.2, H-4), 4.43 (d, 2H, J = 5.6, H-1'''), 5.14-5.17 (m, 1H, H-5), 5.21 (d, 1H, J = 4.7, H-1), 5.56 (dd, 1H, J₁ = 7.2, J₂ = 6.5, H-3), 6.81-6.91 (m, 3H, H-2'''' + H-6'''' + CH₂NH)*, 7.14-7.22 (m, 2H, H-3'''' + H-5'''''), 7.25 (bs, 1H, CONH)*, 7.38-7.53 (m, 3H, H-3'''' + H-4'''' + H-5''), 7.70-7.76 (m, 2H, H-2'''' + H-6''). **Overlapped with those from 7βf.

The H-2 signal around 5.0 ppm is hidden under H-3 from the β-anomer (DQF-COSY). δC (75.5 MHz, CDCl₃, Me₄Si) 20.54 (CH₃), 20.67 (CH₃)**, 20.78 (CH₃)**, 20.91 (CH₃)**, 25.88 (C-2'''' or C-3'''')**, 25.94 (C-2'''' or C-3'''')**, 41.08 (C-6), 43.37 (C-1'''), 67.54 (C-4'''')**, 68.18 (C-1''), 71.80, 73.91, 76.46, 78.91, 99.68 (C-1), 114.87 (C-2'''')**, 115.96 (q, CF₃CO, JCF = 288)**, 126.89 (C-2'''), 128.06 (C-4'''), 128.63 (C-3'''), 129.45 (C-3''')**, 131.65 (C-4'''')**, 134.07 (C-1'''), 157.10 (q, CF₃CO, JCF = 37), 158.86 (C-1''''), 167.49 (CO, amide), 169.80 (CO, ester)**, 170.37 (CO, ester), 171.27 (CO, ester). **Overlapped with those of 7βf or not assignable to the proper anomer.

8. Mp 65-66 °C (from Et₂O/pentane/-30 °C). vmax/cm⁻¹ (KBr) 3334 (NH amide), 1716 (ester + amide). δH (300 MHz; CDCl₃, Me₄Si) 1.73-1.89 (m, 4H), 2.05 (s, 3H, CH₃), 3.98 (t, 2H, J = 5.9), 4.13 (t, 3H, J = 6.2), 4.45 (d, 2H, J = 5.7), 5.64 (bs, 1H, NH), 6.84-6.91 (m, 2H), 7.17-7.23 (m, 2H). δC (75.5 MHz, CDCl₃, Me₄Si) 20.95, 25.40, 25.84, 43.47, 64.11, 67.42, 114.96, 115.93 (q, JCF = 288), 128.04, 129.48, 157.06 (q, JCF = 37), 158.97, 171.25. m/z (CI) 334 (M⁺+1, 20%), 221 (100).

Anal. calcd for C₁₅H₁₉F₃NO₄: C, 54.05; H, 5.44; N, 4.20. Found: C, 54.26; H, 5.77; N, 4.06.
$9\beta p$. $[\alpha]_D^{22} = +17.2$ (c 0.255, CHCl$_3$). ν_{max}/cm$^{-1}$ (KBr) 3375 (NH + OH), 1751 (ester), 1646 (amide).
δ_H (300 MHz; CDCl$_3$, Me$_4$Si) 2.07 (s, 3H, $CH_3\beta$), 2.19 (s, 3H, $CH_3\alpha$), 2.20 (s, 3H, $CH_2\beta$), 2.65 (bs, 1H, OH), 3.47-3.70 (m, 2H, H-6), 3.92-4.06 (m, 2H, H-2 + H-5), 5.02 (dd, 1H, $J_1 = 3.4, J_2 = 10.2$, H-3), 5.41 (dd, 1H, $J_1 = 0.7, J_2 = 3.4$, H-4), 5.63 (d, 1H, $J = 8.2$, H-1), 6.63 (bt, 1H, $J = 5.6$, NH), 7.38-7.55 (m, 3H, aromatics), 7.72-7.79 (m, 2H, aromatics). δ_C (75.5 MHz, CDCl$_3$, Me$_4$Si) 20.72 (CH$_3$), 20.98 (3CH$_3$), 39.20 (C-6), 68.35, 68.52, 72.46, 73.03, 94.44 (C-1), 127.03 (C-2"), 128.66 (C-3"), 131.74 (C-4"), 133.92 (C-1"), 167.60 (CO, amide), 169.28 (CO, ester), 170.45 (CO, ester), 170.83 (CO, ester). Anal. calcd for C$_{19}$H$_{23}$NO$_5$: C, 55.74; H, 5.66; N, 3.42. Found: C, 55.64; H, 5.56; N, 3.13.

$10\alpha\beta p$. ν_{max}/cm$^{-1}$ (KBr): 3390 (NH + OH), 1740 (ester), 1647 (amide). δ_H (300 MHz; DMSO-d_6, Me$_4$Si) 1.88 (s, $CH_3\beta$), 1.91 (s, 3H, $CH_3\alpha$), 2.01 (s, 3H, $CH_3\alpha$), 2.03 (s, 3H, $CH_3\beta$), 2.12 (s, 3H, $CH_3\alpha$), 2.13 (s, 3H, $CH_3\beta$), 3.10-3.29 (m, H-6α + H-6β), 3.44-3.64 (m, H-6α + H-6β), 4.12 (bt, 1H, $J = 7.0$, H-5β), 4.44 (bt, 1H, $J = 7.1$, H-5α), 4.78 (dd, 1H, $J_1 = 7.8, J_2 = 6.5$, H-1β), 4.86-4.97 (m, H-2α + H-2β), 5.09 (dd, 1H, $J_1 = 10.3, J_2 = 3$, H-3β), 5.18-5.30 (m, H-1α + H-3α + H-4α + H-4β), 7.11 (dd, 1H, $J_1 = 4.8, J_2 = 0.9$, OHα), 7.19 (d, 1H, $J = 6.5$, OHβ), 7.43-7.56 (m, aromatics), 7.52-7.56 (m, aromatics), 8.45 (bdd, 1H, $J_1 = 7.1, J_2 = 4.1$, NHα), 8.56 (bdd, 1H, $J_1 = 6.6, J_2 = 4.8$, NHβ). δ_C (75.5 MHz; DMSO-d_6, Me$_4$Si) 20.31 (CH$_3$), 20.36 (CH$_3$), 20.47(CH$_3$), 20.52 (CH$_3$), 20.55 (CH$_3$), 20.58 (CH$_3$), 38.46 (C-6), 38.56 (C-6), 65.57 (α-anomer), 67.15 (α-anomer), 67.40 (β-anomer), 67.68 (α-anomer), 68.26 (α-anomer), 70.12 (β-anomer), 70.17 (β-anomer), 89.36 (C-1α), 94.21 (C-1β), 127.05 (C-2"), 128.18 (C-3"), 131.14 (C-4"α), 131.18 (C-4"β), 134.12 (C-1"β), 134.21 (C-1"α), 166.38 (CO, amide), 169.12 (CO, ester), 169.53 (CO, ester), 169.54 (CO, ester), 169.95 (CO ester).
Figure S1. 1H NMR spectrum of 4αp in CDCl$_3$.
Figure S2. 13C NMR spectrum of 4ap in CDCl$_3$.
Figure S3. 1H NMR spectrum of 4βp containing small amounts of 4αp, 4αf and 4βf in CDCl₃.
Figure S4. 13C NMR spectrum of $4\beta p$ containing small amounts of $4\alpha p$, $4\alpha f$ and $4\beta f$ in CDCl$_3$.
Figure S5. 1H NMR spectrum of 5αp in CDCl$_3$.
Figure S6. 13C NMR spectrum of 5αp in CDCl$_3$.
Figure S7. 1H NMR spectrum of $5\beta p$ in CDCl$_3$.
Figure S8. 13C NMR spectrum of 5βp in CDCl$_3$.
Figure S9. 1H NMR spectrum of 6αp in CDCl$_3$.
Figure S10. 13C NMR spectrum of 6αp in CDCl$_3$.
Figure S11. 1H NMR spectrum of 6βp in CDCl$_3$.
Figure S12. 13C NMR spectrum of $6\beta p$ in CDCl$_3$.
Figure S13. 1H NMR spectrum of $7\alpha\beta f$ in CDCl$_3$.
Figure S14. 13C NMR spectrum of 7αβf in CDCl$_3$.
Figure S15. 1H and 13C NMR spectra of 8 in CDCl$_3$.
Figure S16. 1H NMR spectrum of 9βp in CDCl$_3$.
Figure S17. 13C NMR spectrum of 9βp in CDCl$_3$.
Figure S18. 1H NMR spectrum of 10αβp in DMSO-d_6.
Figure S19. 13C NMR spectrum of $10\alpha\beta p$ in DMSO-d_6.
Figure S20. 1H NMR spectrum of 11 in CDCl$_3$.
Figure S21. 13C NMR spectrum of 11 in CDCl$_3$.
Figure S22. 1H and 13C NMR spectra of 12 in CDCl$_3$.