Electronic Supporting Information

Porphyranated Polyimide Honeycomb Films with High Thermal Stability for HCl Gas Sensing

Fu-Wen Lin, b Xiao-Ling Xu, b Ling-Shu Wan, a,c Jian Wu, b* and Zhi-Kang Xu, a,c*

aMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China. E-mail: lswan@zju.edu.cn (L.-S. Wan), xuzk@zju.edu.cn (Z.-K. Xu); Fax: +86 571 87951592

bDepartment of Chemistry, Zhejiang University, Hangzhou 310027, China. E-mail: jianwu@zju.edu.cn (J. Wu)

cCyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
Scheme S1. Synthetic route for porphyrinated polyimide (PPI).

Figure S1. 1H NMR spectra (400 MHz, CDCl$_3$, 298K) of (a) HPI, (b) cis-DATPP, and (c) 15PPI.
Figure S2. TGA (A) and DSC (B) curves of the polyimides, HPI and 15PPI. The glass transition temperature (T_g) of HPI and 15PPI is around 296 °C. The temperature for 5% gravimetric loss of HPI and 15PPI are 543 °C and 547 °C, respectively.

Figure S3. (A) UV-visible absorption spectra and (B) fluorescence emission spectra of HPI, cis-DATPP, TPP, and 15PPI (excited at 420 nm).
Figure S4. Photographs of 15PPI honeycomb films. (a) original, (b) after exposing to HCl gas, and (c) after puffing with NH₃ gas.

Figure S5. Regaining of the quenching efficiency for the 15PPI dense film after exposing to HCl and NH₃ gases for five cycles.