Regioselective three-component reactions of enaminones, 2-amino pyridines and enals for the synthesis of 1,2-dihydropyridines

Shuo Cao, a Luoting Xin a Yunyun Liu, a Jie-Ping Wan a, * and Chengping Wen b, *
a Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P R China. E-mail: wanjieping@gmail.com
b College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P R China. E-mail: cpwen.zcmu@yahoo.com

Contents

General information ... S1
Procedure for the synthesis of 1,2- DHPs .. S2
Reference .. S2
Characterization data ... S3-S10
1H and 13C NMR spectra .. S11-S27

General information

Enaminones were synthesized following literature procedure, and all other chemicals were obtained from commercial sources. Reagents were used directly as obtained without further purification. 1H and 13C NMR spectra were recorded on a 400 MHz apparatus. The frequencies for 1H NMR and 13C NMR experiments are 400 MHz and 100 MHz, respectively. The chemical shifts were recorded in ppm with TMS as internal standard. An X-4A instrument was employed for measuring melting points of all solid products without temperature correction. HRMS results were obtained...
under ESI model.

General procedure for the three-component synthesis of 1,2-DHPs

2-Aminopyridine 1 (0.3 mmol), enal 2 (0.3 mmol), enaminone 3 (0.3 mmol), p-TSA (0.3 mmol) and AcOH (0.3 mmol) were charged in a 25 mL round bottom flask equipped with a stirring bar. THF (2ml) were added and the mixture was stirred at reflux for 12 h (TLC). Then, the solvents were directly removed from the mixture under reduced pressure. The residue was subjected to flash silicon column chromatography to provide pure products by using mixed ethyl acetate (EA) and petroleum ether (PE) as eluent ($V_{PE} / V_{EA} = 6:1$).

Reference

Phenyl(2-phenyl-1-(pyridin-2-yl)-1,2-dihydropyridin-5-yl)methanone (4a). Yellow solid; m.p. 60-63 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.57 (s, 1H), 8.25 (d, \(J = 6.0\) Hz, 1H), 7.71 (d, \(J = 7.6\) Hz, 2H), 7.50-7.42 (m, 6H), 7.34 (t, \(J = 7.6\) Hz, 2H), 7.28 (d, \(J = 7.2\) Hz, 1H), 6.91 (q, \(J = 4.0\) Hz, 1H), 6.79 (d, \(J = 8.8\) Hz, 2H), 5.97 (d, \(J = 5.2\) Hz, 1H), 5.75 (dd, \(J_1 = 9.6\) Hz, \(J_2 = 4.8\) Hz, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 192.4, 153.4, 148.3, 142.2, 141.8, 139.4, 138.2, 130.8, 129.1, 128.9, 128.2, 128.0, 125.6, 120.1, 119.2, 118.8, 113.5, 110.4, 59.7; ESI-HRMS: Calcd for C\(_{23}\)H\(_{19}\)N\(_2\)O [M+H]\(^+\): 339.1492; Found: 339.1481.

(1-(4-Methylpyridin-2-yl)-2-phenyl-1,2-dihydropyridin-5-yl)(phenyl)methanone (4b). Brown solid; m.p. 64-66°C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.52 (s, 1H), 8.10 (d, \(J = 4.8\) Hz, 1H), 7.70 (d, \(J = 6.4\) Hz, 2H), 7.48-7.42 (m, 5H), 7.35 (t, \(J = 7.2\) Hz, 2H), 7.27 (d, \(J = 7.2\)Hz, 1H), 6.76 (q, \(J = 8.0\) Hz, 2H), 6.63 (s, 1H), 6.00 (d, \(J = 4.8\) Hz, 1H), 5.73 (dd, \(J_1 = 9.6\) Hz, \(J_2 = 4.8\) Hz, 1H), 2.19 (s, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 192.4, 153.7, 149.7, 147.9, 142.3, 139.5, 130.9, 129.9, 129.1, 129.0, 128.2, 128.0, 125.7, 120.3, 119.9, 119.4, 113.4, 111.1, 59.6, 21.4; ESI-HRMS: Calcd for C\(_{24}\)H\(_{21}\)N\(_2\)O [M+H]\(^+\): 353.1648; Found: 353.1656.
(1-(6-Methylpyridin-2-yl)-2-phenyl-1,2-dihydropyridin-5-yl)(phenyl)methanone (4c). Brown solid; m.p. 61-64°C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.61 (s, 1H), 7.71 (d, \(J = 6.8\) Hz, 2H), 7.49–7.38 (m, 5H), 7.36–7.24 (m, 4H), 6.78 (d, \(J = 8.4\) Hz, 2H), 6.58 (d, \(J = 8.4\) Hz, 1H), 5.99 (d, \(J = 5.2\) Hz, 1H), 5.71 (dd, \(J_1 = 10.0\) Hz, \(J_2 = 5.6\) Hz, 1H), 2.39 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 192.3, 157.5, 152.7, 142.4, 142.3, 139.5, 138.4, 130.7, 129.0, 128.9, 128.1, 127.9, 125.8, 120.0, 119.2, 118.3, 113.0, 107.2, 59.7, 24.2; ESI-HRMS: Calcd for C\(_{24}\)H\(_{21}\)N\(_2\)O \([M+H]^+\): 353.1648; Found: 353.1657.

(1-(4-Chloropyridin-2-yl)-2-phenyl-1,2-dihydropyridin-5-yl)(phenyl)methanone (4d). Brown solid; m.p. 61-64 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.47 (s, 1H), 8.15 (d, \(J = 5.6\) Hz, 1H), 7.71 (d, \(J = 6.8\) Hz, 2H), 7.52 (t, \(J = 7.6\) Hz, 1H), 7.49–7.42 (m, 4H), 7.36 (t, \(J = 7.2\) Hz, 2H), 7.29 (t, \(J = 7.2\) Hz, 1H), 6.91 (d, \(J = 5.2\) Hz, 1H), 6.78 (t, \(J = 8.40\) Hz, 2H), 5.93 (d, \(J = 5.2\) Hz, 1H), 5.77 (dd, \(J_1 = 9.6\) Hz, \(J_2 = 5.2\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 192.5, 154.6, 149.0, 145.8, 141.5, 140.7, 139.1, 131.1, 129.2, 128.9, 128.3, 125.6, 120.6, 119.1, 118.9, 114.4, 110.4, 59.6; ESI-HRMS: Calcd for C\(_{23}\)H\(_{18}\)ClN\(_2\)O \([M+H]^+\): 373.1102; Found: 373.1111.
(1-(5-Chloropyridin-2-yl)-2-phenyl-1,2-dihydropyridin-5-yl)(phenyl)methanone (4e). Brown solid; m.p. 89-92°C; 1H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 8.20 (d, J = 2.4 Hz, 1H), 7.69 (d, J = 6.8 Hz, 2H), 7.51 (d, J = 7.6 Hz, 1H), 7.48-7.44 (m, 3H), 7.40 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 6.75 (t, J = 9.6 Hz, 2H), 5.94 (d, J = 5.2 Hz, 1H), 5.76 (dd, J₁ = 9.6 Hz, J₂ = 5.2 Hz, 1H); 13C NMR (100 MHz, CDCl₃): δ 192.4, 151.7, 146.9, 141.7, 141.0, 139.2, 137.9, 131.0, 129.2, 128.9, 128.3, 128.2, 126.3, 125.6, 120.4, 119.1, 113.9, 110.9, 59.9; ESI-HRMS: Calcd for C₂₃H₁₈ClN₂O [M+H]+: 373.1102; Found: 373.1110.

\[
\begin{array}{c}
\text{F}_3\text{C} \\
\text{N} \\
\text{Cl} \\
\end{array}
\]

(1-(5-Chloropyridin-2-yl)-2-phenyl-1,2-dihydropyridin-5-yl)(4-(trifluoromethyl)phenyl)methanone (4f). Brown solid; m.p. 70-73°C; 1H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 7.99 (d, J = 5.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 7.22 (t, J = 7.2 Hz, 2H), 7.15 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 4.8 Hz, 1H), 6.69 (s, 1H), 6.61 (d, J = 10.0 Hz, 1H), 5.77 (d, J = 5.2 Hz, 1H), 5.64 (dd, J₁ = 10.0 Hz, J₂ = 5.2 Hz, 1H); 13C NMR (100 MHz, CDCl₃): δ 191.0, 154.2, 149.0, 145.9, 142.5, 141.4, 141.3, 132.7, 131.3, 119.1, 128.4, 125.5, 125.3 (q, J = 3.5 Hz), 121.0, 119.3, 118.5, 113.8, 110.6, 59.9; ESI-HRMS: Calcd for C₂₄H₁₇ClF₃N₂O [M+H]+: 441.0976; Found: 441.0981.

\[
\begin{array}{c}
\text{MeO} \\
\text{N} \\
\text{Cl} \\
\end{array}
\]

(2-(2-Chlorophenyl)-1-(5-chloropyridin-2-yl)-1,2-dihydropyridin-5-yl)(4-methoxyphenyl)methanone (4g). Brown solid; m.p. 63-65°C; 1H NMR (400 MHz,
CDCl$_3$: δ 8.69 (s, 1H), 8.15 (d, $J = 5.2$ Hz, 1H), 7.74 (d, $J = 8.0$ Hz, 2H), 7.47 (t, $J = 4.8$ Hz, 1H), 7.42 (t, $J = 4.4$ Hz, 1H), 7.23 (dd, $J_1 = 10.0$ Hz, $J_2 = 6.0$ Hz, 2H), 6.99 (d, $J = 8.0$ Hz, 2H), 6.92 (d, $J = 5.2$ Hz, 1H), 6.70 (d, $J = 10.4$ Hz, 2H), 6.28 (d, $J = 5.2$ Hz, 1H), 5.86 (dd, $J_1 = 10.0$ Hz, $J_2 = 4.8$ Hz, 1H), 3.88 (s, 3H);

13C NMR (100 MHz, CDCl$_3$): δ 191.4, 162.2, 154.1, 149.1, 146.0, 139.8, 139.1, 131.6, 131.1, 130.0, 129.5, 129.4, 128.2, 127.0, 119.9, 118.9, 118.5, 113.7, 113.6, 109.7, 57.0, 55.4; ESI-HRMS: Calcd for C$_{24}$H$_{19}$Cl$_2$N$_2$O$_2$ [M+H]$^+$: 437.0818; Found: 437.0813.

(2-(2-Chlorophenyl)-1-(5-chloropyridin-2-yl)-1,2-dihydropyridin-5-yl)(4-chlorophenyl)methanone (4h). Yellow solid; m.p. 98-101 °C; 1H NMR (400 MHz, CDCl$_3$): δ 8.72 (s, 1H), 8.16 (d, $J = 5.2$ Hz, 1H), 7.67 (d, $J = 8.4$ Hz, 2H), 7.47-7.41 (m, 4H), 7.24 (dd, $J_1 = 8.8$ Hz, $J_2 = 4.8$ Hz, 2H), 6.94 (d, $J = 5.6$ Hz, 1H), 6.70 (d, $J = 10.0$ Hz, 2H), 6.27 (d, $J = 4.8$ Hz, 1H), 5.86 (dd, $J_1 = 10.0$ Hz, $J_2 = 4.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$): δ 191.1, 153.8, 149.1, 146.1, 140.8, 138.8, 137.4, 137.2, 130.3, 130.0, 129.6, 129.5, 128.6, 128.3, 127.0, 119.2, 118.8, 113.2, 109.9, 57.2; ESI-HRMS: Calcd for C$_{23}$H$_{16}$Cl$_3$N$_2$O [M+H]$^+$: 441.0323; Found: 441.0310.

(2-(2-Chlorophenyl)-1-(5-chloropyridin-2-yl)-1,2-dihydropyridin-5-yl)(4-nitrophenyl)methanone (4i). Brown solid; m.p. 115-118 °C; 1H NMR (400 MHz, CDCl$_3$): δ 8.75 (s, 1H), 8.34 (d, $J = 8.4$ Hz, 2H), 8.15 (d, $J = 5.2$ Hz, 1H), 7.84 (d, $J = 8.8$ Hz, 2H), 7.45-7.40 (m, 2H), 7.27-7.25 (m, 2H), 6.97 (dd, $J_1 = 5.6$ Hz, $J_2 = 1.6$ Hz, S6
(1-(4-Chloropyridin-2-yl)-2-(4-methoxyphenyl)-1,2-dihydropyridin-5-yl)(p-tolyl) methanone (4j). Brown solid; m.p. 71-74°C; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1H), 8.16 (d, J = 5.2 Hz, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 7.6 Hz, 1H), 6.92~6.87 (m, 3H), 6.82 (s, 1H), 6.76 (d, J = 9.6 Hz, 1H), 5.90 (d, J = 5.2 Hz, 1H), 5.74 (dd, J₁ = 9.6 Hz, J₂ = 5.2 Hz, 1H), 3.78 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 159.5, 154.7, 148.9, 145.7, 141.6, 140.1, 136.4, 133.8, 129.2, 129.0, 127.2, 120.8, 119.1, 118.8, 114.5, 110.4, 58.8, 55.3, 21.6; ESI-HRMS: Calcd for C₂₅H₂₂ClN₂O₂ [M+H]⁺: 417.1364; Found: 417.1369.

(1-(Pyridin-2-yl)-2-m-tolyl-1,2-dihydropyridin-5-yl)(4-nitrophenyl) methanone (4k). Brown solid; m.p. 81-83°C; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 8.33 (d, J = 8.8 Hz, 2H), 8.28 (d, J = 5.6 Hz, 1H), 7.84 (d, J = 8.8 Hz, 2H), 7.54 (t, J = 8.8 Hz, 1H), 7.24 (d, J = 6.4 Hz, 1H), 7.18 (s, 2H), 7.11 (d, J = 7.2 Hz, 1H), 6.98 (q, J = 4.0 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 10.0 Hz, 1H), 5.88 (d, J = 4.8 Hz, 1H), 5.75 (dd, J₁ = 9.6 Hz, J₂ = 5.2 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.0, 152.9, 149.0, 148.4, 145.4, 142.9, 141.8, 139.1, 138.5, 129.6, 129.2, 129.1,
125.9, 123.5, 122.4, 120.8, 119.5 118.0, 112.7, 110.7, 60.4, 21.6; ESI-HRMS: Calcd for C_{24}H_{20}N_{3}O_{3} [M+H]^+: 398.1499; Found: 398.1497.

\[
\begin{align*}
\text{(1-(5-Bromopyridin-2-yl)-2-(4-nitrophenyl)-1,2-dihydropyridin-5-yl)(4-bromophenyl)methanone (4l).} \\
\text{Brown solid; m.p. 72-75\degree C; } ^1\text{H NMR (400 MHz, CDCl}_3): \delta 8.31 (d, J = 2.4 Hz, 1H), 8.23 (s, 1H), 8.19 (d, J = 8.8 Hz, 2H), 7.67 (dd, J_1 = 8.8 Hz, J_2 = 2.8 Hz, 1H), 7.60 (d, J = 8.4 Hz, 3H), 7.55 (t, J = 7.2 Hz, 3H), 6.76 (q, J = 9.6 Hz, 2H), 6.21 (d, J = 5.2 Hz, 1H), 5.77 (dd, J_1 = 9.6 Hz, J_2 = 5.2 Hz, 1H); ^{13}\text{C NMR (100 MHz, CDCl}_3): \delta 190.9, 151.7, 149.3, 148.4, 147.6, 141.0, 140.3, 137.5, 131.7, 130.4, 126.8, 126.0, 124.4, 120.4, 119.3, 114.9, 114.2, 111.3, 58.7; ESI-HRMS: Calcd for C_{23}H_{16}Br_2N_3O_3 [M+H]^+: 539.9553; Found: 539.9546.
\end{align*}
\]

\[
\begin{align*}
\text{(1-(4-Chloropyridin-2-yl)-2-(4-methoxyphenyl)-1,2-dihydropyridin-5-yl)(2-methylphenyl)methanone (4m).} \\
\text{Brown solid; m.p. 135-138\degree C; } ^1\text{H NMR (400 MHz, CDCl}_3): \delta 8.22 (s, 1H), 8.11 (d, J = 4.8 Hz, 1H), 7.31 (d, J = 8.8 Hz, 4H), 7.23 (d, J = 8.4 Hz, 2H), 6.90-6.84 (m, 3H) , 6.74 (d, J = 12.8 Hz, 2 H) , 5.87 (d, J = 4.8 Hz, 1H), 5.70 (dd, J_1 = 9.6 Hz, J_2 = 5.2 Hz, 1H), 3.76 (s, 3H), 2.37 (s, 3H); ^{13}\text{C NMR (100 MHz, CDCl}_3): \delta 194.3, 159.5, 154.5, 148.9, 145.7, 141.3, 139.4, 135.8, 133.7, 130.8, 129.3, 127.5, 127.2, 125.3, 120.9, 119.0, 118.0, 115.3, 114.5, 110.5, 59.1, 55.3, 19.7 ESI-HRMS: Calcd for C_{25}H_{22}ClN_2O_2 [M+H]^+: 417.1364; Found: 417.1350.
\end{align*}
\]
(1-(4-Methylpyridin-2-yl)-2-(4-nitrophenyl)-1,2-dihydropyridin-5-yl)(4-bromophenyl)methanone (4n). Brown solid; m.p. 101-104°C; 1H NMR (400 MHz, CDCl$_3$): δ 8.30 (s, 1H), 8.20 (d, $J = 8.4$ Hz, 2H), 8.14 (d, $J = 4.8$ Hz, 1H), 7.62~7.54 (m, 6H), 6.82 (t, $J = 8.8$ Hz, 2H), 6.63 (s, 1H), 6.27 (d, $J = 5.2$ Hz, 1H), 5.75 (dd, $J_1 = 10.0$ Hz, $J_2 = 5.6$ Hz, 1H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 190.8, 153.4, 150.1, 149.0, 148.1, 147.5, 141.3, 137.9, 131.6, 130.4, 126.8, 125.8, 124.3, 120.8, 118.5, 113.6, 110.9, 58.4, 21.4. ESI-HRMS: Calcd for C$_{24}$H$_{19}$BrN$_3$O$_3$ [M+H]$^+$: 476.0604; Found: 476.0588.

(1-(4-Methylpyridin-2-yl)-2-(4-nitrophenyl)-1,2-dihydropyridin-5-yl)(3,4-dichlorophenyl)methanone (4o). Brown solid; m.p. 80-83°C; 1H NMR (400 MHz, CDCl$_3$): δ 8.32 (s, 1H), 8.20 (d, $J = 8.4$ Hz, 2H), 8.16 (d, $J = 4.8$ Hz, 1H), 7.78 (s, 1H), 7.57 (t, $J = 10.0$ Hz, 3H), 7.49 (d, $J = 8.0$ Hz, 1H), 6.85 (d, $J = 5.2$ Hz, 1H), 6.78 (d, $J = 10.0$ Hz, 1H), 6.64 (s, 1H), 6.27 (d, $J = 5.6$ Hz, 1H), 5.74 (dd, $J_1 = 9.6$ Hz, $J_2 = 5.2$ Hz, 1H), 2.28 (s, 3 H); 13C NMR (100 MHz, CDCl$_3$): δ 189.3, 153.3, 150.2, 148.8, 148.1, 141.6, 138.8, 135.4, 132.9, 130.8, 130.4, 127.9, 126.7, 124.3, 121.0, 120.6, 118.7, 113.3, 111.0, 58.6, 21.4 ESI-HRMS: Calcd for C$_{24}$H$_{18}$Cl$_2$N$_3$O$_3$ [M+H]$^+$: 466.0720; Found: 466.0721.
(1-(5-Chloropyridin-2-yl)-2-(4-nitrophenyl)-1,2-dihydropyridin-5-yl)(\rho-tolyl)methanone (4p). Brown solid; m.p. 98-101°C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 8.21 (d, \(J = 9.2\) Hz, 3H), 8.16 (s, 1H), 7.61 (d, \(J = 3.6\) Hz, 4H), 7.58 (d, \(J = 2.8\) Hz, 2H), 7.27 (d, \(J = 9.6\) Hz, 1H), 6.83 (d, \(J = 10.0\) Hz, 1H), 6.77 (d, \(J = 8.8\) Hz, 1H), 6.24 (d, \(J = 5.2\) Hz, 1H), 5.77 (dd, \(J_1 = 9.2\) Hz, \(J_2 = 5.2\) Hz, 1H), 2.44 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 191.9, 151.5, 148.7, 147.5, 147.0, 141.9, 139.8, 138.1, 136.0, 129.1, 129.0, 126.9, 126.7, 124.3, 121.0, 119.0, 114.8, 110.7, 58.4, 21.6. ESI-HRMS: Calcd for C\(_{24}\)H\(_{19}\)ClN\(_3\)O\(_3\) [M+H]\(^+\): 432.1109; Found: 432.1118.

(1-(4-Chloropyridin-2-yl)-2-(4-nitrophenyl)-1,2-dihydropyridin-5-yl)(3,4-dichlorophenyl)methanone (4q). Brown solid; m.p. 83-86°C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 8.29 (s, 1H), 8.21 (d, \(J = 7.6\) Hz, 3H), 7.77 (s, 1H), 7.56 (t, \(J = 8.0\) Hz, 3H), 7.49 (t, \(J = 4.0\) Hz, 1H), 7.01 (d, \(J = 4.8\) Hz, 1H), 6.78 (t, \(J = 9.2\) Hz, 2H), 6.19 (d, \(J = 4.8\) Hz, 1H), 5.79 (dd, \(J_1 = 10.0\) Hz, \(J_2 = 5.6\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 189.4, 154.0, 149.2, 148.1, 147.7, 146.3, 140.2, 138.4, 135.8, 133.1, 130.8, 130.4, 127.9, 126.7, 124.5, 120.3, 119.8, 119.5, 114.3, 110.4, 58.6, ESI-HRMS: Calcd for C\(_{23}\)H\(_{15}\)Cl\(_3\)N\(_3\)O\(_3\) [M+H]\(^+\): 486.0174; Found: 486.0153.
1H and 13C NMR of all synthesized substrates and products

1H and 13C NMR of $4a$
1H and 13C NMR of 4b
1H and 13C NMR of 4e
1H and 13C NMR of 4d
\(^1\)H and \(^{13}\)C NMR of 4e
^1H and ^{13}C NMR of 4f
1H and 13C NMR of 4g
1H and 13C NMR of $4h$
1H and 13C NMR of 4i

[Diagram of NMR spectra and chemical structure]

S19
1H and 13C NMR of 4j
1H and 13C NMR of 4k
1H and 13C NMR of 4l
1H and 13C NMR of 4m
1H and 13C NMR of 4n
^1H and ^{13}C NMR of 4o
1H and 13C NMR of 4p
1H and 13C NMR of 4q