Journal Name

Supporting Information

Structure, absolute configuration, and conformational study of resorcylic acid derivatives and related congeners from the fungus *Penicillium brocae*[†]

Peng Zhang,^{‡ab} Ling-Hong Meng,^{‡ab} Attila Mándi,^c Xiao-Ming Li,^a Tibor Kurtán^{*c} and Bin-Gui Wang^{*a}

Content

SI-1: Conformational analysis and TDDFT-ECD calculations of compounds 1 and 3. SI-2: Solid-state TDDFT-ECD calculation of 3. SI-3: References cited in the Supporting Information. Figure S1: Low-energy B97D/TZVP PCM/MeCN conformers of (13S,14R)-4. Figure S2: Experimental ECD spectrum of 4 compared with the Boltzmann-weighted BH&HLYP/TZVP spectrum calculated for the B97D/TZVP (PCM for acetonitrile) conformers of (13S,14R)-4. Figure S3: HR-ESI-MS spectrum of compound 4. Figure S4: ¹H NMR (500M, DMSO-*d*₆) spectrum of compound 4. Figure S5: ¹³C NMR (125M, DMSO-*d*₆) and DEPT spectra of compound 4. Figure S6: ¹H-¹H COSY spectrum of compound 4. Figure S7: HSQC spectrum of compound 4. Figure S8: HMBC spectrum of compound 4. Figure S9: NOESY spectrum of compound 4. Figure S10: HR-ESI-MS spectrum of compound 5. Figure S11: ¹H NMR (500M, CDCl₃) spectrum of compound 5. Figure S12: ¹³C NMR (125M, CDCl₃) and DEPT spectra of compound 5. Figure S13: ¹H-¹H COSY spectrum of compound 5. Figure S14: HSQC spectrum of compound 5. Figure S15: HMBC spectrum of compound 5. Figure S16: NOESY spectrum of compound 5. Figure S17: HR-ESI-MS spectrum of compound 6. Figure S18: ¹H NMR (500M, CDCl₃) spectrum of compound 6. Figure S19: ¹³C NMR (125M, CDCl₃) and DEPT spectra of compound 6. Figure S20: ¹H-¹H COSY spectrum of compound 6. Figure S21: HSQC spectrum of compound 6. Figure S22: HMBC spectrum of compound 6. Figure S23: NOESY spectrum of compound 6. Figure S24: HR-ESI-MS spectrum of compound 7. Figure S25: ¹H NMR (500M, acetone- d_6) spectrum of compound 7. Figure S26: ¹³C NMR (125M, acetone- d_6) and DEPT spectra of compound 7. Figure S27: ¹H-¹H COSY spectrum of compound 7. Figure S28: HSQC spectrum of compound 7. Figure S29: HMBC spectrum of compound 7. Figure S30: NOESY spectrum of compound 7. Figure S31: HR-ESI-MS spectrum of compound 8. Figure S32: ¹H NMR (500M, CDCl₃) spectrum of compound 8. Figure S33: ¹³C NMR (125M, CDCl₃) and DEPT spectra of compound 8. Figure S34: ¹H-¹H COSY spectrum of compound 8. Figure S35: HSQC spectrum of compound 8. Figure S36: HMBC spectrum of compound 8. Figure S37: HR-ESI-MS spectrum of compound 9. Figure S38: ¹H NMR (500M, DMSO- d_6) spectrum of compound 9. Figure S39: ¹³C NMR (125M, DMSO-*d*₆) and DEPT spectra of compound 9. Figure S40: ¹H-¹H COSY spectrum of compound 9. Figure S41: HSQC spectrum of compound 9. Figure S42: HMBC spectrum of compound 9. Figure S43: Decoupling spectrum of compound 4 (600M Hz, acetonitrile- d_3).

ARTICLE SI-1: Conformational analysis and TDDFT-ECD calculations of compounds 1 and 3.

The ECD spectrum of **1** in acetonitrile showed negative Cotton effects (CEs) at 307 and 212 nm and positive ones at 285, 260 and 227 nm. The initial MMFF conformational analysis of the arbitrarily chosen (14*S*)-**1** afforded 74 MMFF conformers, which were reoptimized at B3LYP/6-31G(d) level of theory *in vacuo* resulting in eight conformers over 2% Boltzmann population (Figure 1) and at B97D/TZVP level^[1,2] with PCM solvent model for acetonitrile resulting in 10 low-energy conformers (Figure 2).

Figure 1. Structures and populations of the low-energy B3LYP/6-31G(d) in vacuo conformers (> 2%) of (14S)-1.

Figure 2. Structures and populations of the low-energy B97D/TZVP PCM/MeCN conformers (> 2%) of (14S)-1.

In conformers A–F of the B97D/TZVP reoptimization, the C-8 carbonyl group has similar orientation relative to the resorcylic acid chromophore and the 14-Me group adopted *quasi-axial* orientation, while they differed in the orientation of the 4-OH proton and C-10–13 methylene groups. In accordance they showed very similar computed ECD spectra, which were mirror image of the experimental curve. The C-8 carbonyl was flipped in conformers G–J, which as a consequence gave different computed ECD spectra from those of conformers A–F. Conformers G–J were not obtained in the gas phase B3LYP/6-31G(d) conformational analysis (Figure 1). The Boltzmann-averaged ECD spectra calculated for both the *in vacuo* and solvent model conformers at B3LYP/TZVP, BH&HLYP/TZP and PBE0/TZVP levels were mirror image of the experimental ECD spectrum allowing the determination of the absolute configuration as (14*R*) (Figures 3 and 4). The solvent model and more advanced functional were able to improve the agreement significantly. The best agreement was found for the BH&HLYP computed averaged ECD spectrum of the solvent model conformers, which is shown in Figure 3.

Figure 3. Experimental ECD spectrum of 1 in acetonitrile compared with the Boltzmann-weighted BH&HLYP/TZVP ECD spectrum calculated for the B97D/TZVP (PCM model for MeCN) conformers of (145)-1. Bars represent rotational strength values for the lowest-energy conformer.

Figure 4. Experimental ECD spectrum of 1 in acetonitrile compared with the Boltzmann-weighted PBE0/TZVP ECD spectrum calculated for the B3LYP/6-31G(d) *in vacuo* conformers of (14*S*)-1. Bars represent rotational strength values for the lowest-energy conformer.

Compared to (*R*)-dihydroresocylide (1), compound **3** had an additional stereogenic centre at C-10 due to the *sec*-hydroxyl group. The corresponding CEs in the ECD spectra of **1** and **3** had the same sign except for the 285 nm positive shoulder of **1**, which was changed to a negative shoulder in **3**. Similarly to the case of **1**, *in vacuo* B3LYP/6-31G(d) and B97D/TZVP PCM solvent model (MeCN) reoptimization of the initial MMFF conformers of (10R, 14R)-**3** were carried out to reveal the effect of the additional C-10 stereogenic centre on the preferred conformation. B97D/TZVP PCM solvent model (MeCN) reoptimization of (10R, 14R)-**3** afforded 17 conformers above 2.0% population (Figure 5), in all of which the 14-Me group had *quasi-equatorial* orientation and the orientation of the C-8 carbonyl group was similar to those of the high-energy conformers G–J of **1**.

Figure 5. Structure and population of the low-energy B97D/TZVP PCM/MeCN conformers (> 2%) of (10R, 14R)-3.

In the low-energy conformers A–D totaling 42.0% population, the 10-OH was axial and hydrogen-bonded to the C-8 carbonyl oxygen, while the C-10 was flipped in the higher-energy conformers E–Q (42.7% total population) shifting the 10-OH to a *quasi-equatorial* position. Interestingly, this conformational change of the macrolactone ring did not result in significant changes in the computed ECD spectra of the conformers. The Boltzmann-weighted ECD spectra of the B97D/TZVP (PCM solvent model for MeCN) conformers of (10R, 14R)-3 reproduced well the experimental ECD curve of 3 with BH&HLYP PCM/MeCN affording the best agreement (Figure 6), which confirmed the (10R, 14R) absolute configuration of 3.

Figure 6. Experimental ECD spectrum of 3 in acetonitrile compared with the Boltzmann-weighted BH&HLYP/TZVP spectrum calculated for the B97D/TZVP (PCM model for MeCN) conformers of (10R, 14R)-3. Bars represent rotational strength values for the lowest-energy conformer.

SI-2: Solid-state TDDFT-ECD calculation of 3.

Figure 7. Structure and population of the low-energy B3LYP/6-31G(d) in vacuo conformers (> 2%) of (10R,14R)-3.

Figure 8. Experimental ECD spectrum of 3 in acetonitrile compared with the Boltzmann-weighted BH&HLYP/TZVP spectrum calculated for the B3LYP/6-31G(d) *in vacuo* conformers of (10*R*,14*R*)-3. Bars represent rotational strength values for the lowest-energy conformer.

The *in vacuo* B3LYP/6-31G(d) conformers (Figure 7) of **3** provided also satisfactory agreement (Figure 8), which were not improved significantly by the more advanced functional, larger basis set and solvent model. The calculations showed that although the additional C-10

Journal Name

stereogenic centre induces remarkable conformational changes of the macrolactone ring, these changes are not reflected profoundly in the ECD spectra of the conformers. The single crystal X-ray of $3^{[3]}$ could be also resolved, which showed the presence of two conformers in 1:1 ratio in the crystal lattice (Figure 9).

Figure 9. a) Structures of the solid-state X-ray conformers observed in 1:1 ratio in the crystal lattice. b) X-ray structure of 3 (Note: A different numbering system is used for the structure in the text).

Given the geometry of the solid-state conformers, the solid-state TDDFT-ECD approach^[4,5] could be applied. This method has been used efficiently to determine the absolute configuration of natural products, for which the X-ray analysis reported only the relative configuration.^[2,4-6] Moreover, it was also found useful to compare the solution and solid-state conformers of conformationally flexible molecules.^[7,8] In the two solid-state conformers of **3** differing in the flip of the C-12 methylene, the 14-Me and 10-OH were *quasi-equatorial*, similar to the computed conformers E–H, but the C-8 carbonyls had different orientation. The two solid-state conformers were not represented by any of the computed solution conformers. A–Q above 2% population and their macrolactone rings were more flattened and extended than those in most of the computed conformers. The solid-state ECD spectrum of **3** recorded as KCl disc showed the same signs for the CEs of the corresponding ECD bands as those of the solution ECD but the two high-wavelength negative CEs had much larger amplitude relatively to that of the positive band. ECD spectra were calculated for the two solid-state conformers with different methods and the weighted average ECD spectra reproduced well the signs of the CEs confirming the (10*R*,14*R*) absolute configuration but the relative intensity of the 230 nm positive shoulder was overestimated (Figure 10).

Figure 10. Experimental solid-state ECD spectrum of 3 as KCl disc compared with the PBE0/TZVP spectrum calculated for the two solid-state X-ray conformers of (10*R*,14*R*)-3. Bars represent rotational strength values for conformer A.

X-ray crystallographic analysis of compound 3

Colorless prismatic crystals of **3** were obtained by recrystallization from MeOH. $C_{17}H_{24}O_7$, $M_r = 340.36$, monoclinic space group P2(1), unit cell dimensions a = 8.0269(8) Å, b = 12.6458(10) Å, c = 16.8180(18) Å, V = 1707.1(3) Å³, $\alpha = \beta = \gamma = 90^\circ$, Z = 4, $d_{calcd} = 1.324$ mg/m³, crystal dimensions $0.26 \times 0.18 \times 0.12$ mm, $\mu = 0.860$ mm⁻¹, F(000) = 728. The 3524 measurements yielded 2485 independent reflections after equivalent data were averaged, and Lorentz and polarization corrections were applied. The final refinement gave $R_1 = 0.0810$ and $wR_2 = 0.2009$ [$I \ge 2\sigma(I)$]. The absolute structure parameter was 0.0(7). All crystallographic data were collected on a Bruker Smart-1000 CCD diffractometer equipped with graphite-monochromated Cu K α radiation ($\lambda = 1.54178$ Å) at 293(2) K. The data were corrected for absorption by using the program SADABS. The structure was solved by direct methods with the SHELXTL software package. All non-hydrogen atoms were refined anisotropically. The H atoms were located by geometrical calculations, and their positions and thermal parameters were fixed during the structure refinement. The structure was refined by full-matrix least-squares techniques.

SI-3: References.

ARTICLE

- [1] S. Grimme, J. Comput. Chem. 2006, 27, 1787.
- [2] P. Sun, D. X. Xu, A. Mándi, T. Kurtán, T. J. Li, B. Schulz and W. Zhang, J. Org. Chem. 2013, 78, 7030.
- [3] Crystallographic data of compound **3** have been deposited in the Cambridge Crystallographic Data Centre as CCDC 1047299. The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif.
- [4] G. Pescitelli, T. Kurtán and K. Krohn, Assignment of the absolute configurations of natural products by means of solid-state electronic circular dichroism and quantummechanical calculations in: comprehensive chiroptical spectroscopy (Eds.: N. Berova, P. L. Polavarapu, K. Nakanishi, R. W. Woody), John Wiley & Sons, Inc., New York, 2012, vol. 2, p. 217.
- [5] G. Pescitelli, T. Kurtán, U. Flörke and K. Krohn, *Chirality*, 2009, **21** (1E), E181.
- [6] T. Kurtán, R. Jia, Y. Li, G. Pescitelli and Y. W. Guo, Eur. J. Org. Chem., 2012, 6722.
- [7] T. Kurtán, G. Pescitelli, P. Salvadori, Á. Kenéz, S. Antus, T. Z. Illyés, L. Szilágyi and I. Szabó, Chirality, 2008, 20(3–4), 379.
- [8] G. Kerti, T. Kurtán, T. Z. Illyés, K. E. Kövér, S. Sólyom, G. Pescitelli, N. Fujioka, N. Berova and S. Antus, Eur. J. Org. Chem. 2007, 296.

Figure S1. Structure and population of the low-energy B97D/TZVP PCM/MeCN conformers (> 2%) of (13S,14R)-4.

Figure S2. Experimental ECD spectrum of **4** in acetonitrile compared with the Boltzmann-weighted BH&HLYP/TZVP spectrum calculated for the B97D/TZVP (PCM for acetonitrile) conformers of (13*S*,14*R*)-**4**. Bars represent rotational strength values for the lowest-energy conformer.

ARTICLE Figure S3. HR-ESI-MS spectrum of compound 4.

Figure S4. ¹H NMR (500M, DMSO-*d*₆) spectrum of compound 4.

Journal Name Figure S5. ¹³C NMR (125M, DMSO-*d*₆) and DEPT spectra of compound 4.

Figure S8. HMBC spectrum of compound 4.

Figure S10. HR-ESI-MS spectrum of compound 5.

ARTICLE

Journal Name

f1 (ppm)

Journal Name Figure S13. ¹H-¹H COSY spectrum of compound 5.

Figure S14. HSQC spectrum of compound 5.

ARTICLE Figure S15. HMBC spectrum of compound 5.

Figure S16. NOESY spectrum of compound 5.

Journal Name Figure S17. HR-ESI-MS spectrum of compound 6.

Figure S18. ¹H NMR (500M, CDCl₃) spectrum of compound 6.

ARTICLE Figure S19. ¹³C NMR (125M, CDCl₃) and DEPT spectra of compound 6.

Journal Name Figure S21. HSQC spectrum of compound 6.

6.5

6.0

5.5

5.0

4.5

4.0

3.5 f2 (ppm)

3.0

2.5

2.0

1.5

1.0

0.5

--10 -0 -10 -20 -30 -40 -50

-60

-170 180 -190 -200 -210

ARTICLE Figure S23. NOESY spectrum of compound 6.

Figure S24. HR-ESI-MS spectrum of compound 7.

Journal Name Figure S25. ¹H NMR (500M, acetone-*d*₆) spectrum of compound 7.

Figure S26. ¹³C NMR (125M, acetone- d_6) and DEPT spectra of compound 7.

ARTICLE Figure S27. ¹H-¹H COSY spectrum of compound 7.

-0.5 -0.0 0.5 1.0 0 1.5 -2.0 -2.5 (mdd) -3.0 IJ -3. 5 -4.0 0 00:00 0 -4.5 -5.0 -5.5 -6.0 -6.5 4.0 3.5 f2 (ppm) 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0

Figure S28. HSQC spectrum of compound 7.

Journal Name

Journal Name Figure S29. HMBC spectrum of compound 7.

Figure S30. NOESY spectrum of compound 7.

ARTICLE

Figure S32. ¹H NMR (500M, CDCl₃) spectrum of compound 8.

2813	5497	4857 4718 4578 4343 4343 4061 1461	5686 5539 5387 5387 5387 5387 5320 5012 5012 5012	1077
9.9 2	i.			17

Figure S34. ¹H-¹H COSY spectrum of compound 8.

ARTICLE Figure S35. HSQC spectrum of compound 8.

Figure S36. HMBC spectrum of compound 8.

20130621-MA192-32_130621143527 #58-62 RT: 0.50-0.53 AV: 5 NL: 4.64E7 T: FTMS + p ESI Full ms [100.00-2000.00]

Figure S38. ¹H NMR (500M, DMSO-*d*₆) spectrum of compound 9.

0664 0625 0182 0182 0182	2663	5277 5166 5065 3894 3894	4864 4884 4834 4804 3922 3775	$\begin{array}{c} 4132\\ 33842\\ 33842\\ 33842\\ 2598\\ 22538\\ 22455\\ 22445\\ 1660\\ 1660\\ 11573\\ 11428\\ 11428\\ 11424\\ 11335\\ 9882\\ $
6.6.6.	4.4	rin ninini	a a a a a a a	

ARTICLE Figure S39. ¹³C NMR (125M, DMSO-*d*₆) and DEPT spectra of compound 9.

-208.48 -158.78 -136.97-107.96-101.36-49.73 -41.51 -66.18 57 04 68 23.5.23. 210 180 160 120 110 fl (ppm) 200 170 130 100 80 70 40 30 190 150 140 90 60 50

Figure S40. ¹H-¹H COSY spectrum of compound 9.

Journal Name Figure S41. HSQC spectrum of compound 9.

Figure S42. HMBC spectrum of compound 9.

ARTICLE

ARTICLE

Figure S43: Decoupling spectrum of compound 4 (600M Hz, acetonitrile- d_3).

